【C语言】数据在内存中的存储


目录

 练笔

整型数据的存储:

char 型数据——最简单的整型

整型提升:

推广到其他整形:

大小端: 

 浮点型数据的存储:

存储格式:


        本篇详细介绍 整型数据,浮点型数据 在计算机中是如何储存的。


 练笔

        在开始之前,先看一道题目:

#include <stdio.h>
int main()
{
char a= -1;
signed char b=-1;
unsigned char c=-1;
printf("a=%d,b=%d,c=%d",a,b,c);
return 0;
}

        快速审题:

        char 默认为 signed char,于是a,b 类型相同;c 则为unsigned char ;

        统一用%d(十进制整型的形式打印);

题解:

       

         a,b的结果在意料之中,但是c为什么到了255!

解法:

        截断:由于char类型长度只有一个字节,8比特位;于是,将 -1 的补码形式截断为8位将剩余的位存入(unsigned)char类型变量;

        打印:unsigned char 没有符号位,被识别是正数,原反补码相同,8个1打印出来是255。

图解:

​​​​​​​


整型数据的存储:

 
        整数的2进制表⽰⽅法有三种,即原码、反码和补码:


        三种表⽰⽅法均有符号位和数值位两部分,符号位都是⽤0表⽰“正”,⽤1表⽰“负”,⽽数值位最⾼位的⼀位是被当做符号位,剩余的都是数值位。


正整数的原、反、补码都相同。


负整数的三种表⽰⽅法各不相同。


        原码:直接将数值按照正负数的形式翻译成⼆进制得到的就是原码。
        反码:将原码的符号位不变,其他位依次按位取反就可以得到反码。
        补码:反码+1就得到补码。

 
        对于整形来说:数据存放内存中其实存放的是补码。

为什么呢?


        在计算机系统中,数值⽤补码来表⽰和存储。


原因在于:

        使⽤补码,可以将符号位和数值域统⼀处理;
        加法和减法也可以统⼀处理(CPU只有加法器)此外,补码与原码相互转换,其运算过程是
相同的,不需要额外的硬件电路。

char 型数据——最简单的整型

        提到整形,不得不提整形提升:

整型提升:

 
        C语言中整型算术运算总是⾄少以缺省整型类型的精度来进⾏的。
        为了获得这个精度,表达式中的字符和短整型操作数在使⽤之前被转换为普通整型,这种转换称为整型提升。

 

        表达式的整型运算要在CPU的相应运算器件内执⾏,CPU内整型运算器(ALU)的操作数的字节⻓度⼀般就是int的字节⻓度,同时也是CPU的通⽤寄存器的⻓度。


        因此,即使两个char类型的相加(或者对char类型进行整型操作,包括以整型的形式打印),在CPU执⾏时实际上也要先转换为CPU内整型操作数的标准长度。

 

        所以,表达式中各种⻓度可能⼩于int⻓度的整型值,都必须先转换为int或unsigned int,然后才能送⼊CPU去执⾏运算。

如何进⾏整体提升呢?


        1. 有符号整数提升是按照变量的数据类型的符号位来提升的
        2. ⽆符号整数提升,⾼位补0

 对于只有8位的char类型,能表示的数字较小,范围有限:

        由于范围较小,char型很容易发生溢出,这是我们在使用时要注意的,同时也是部分面试题的考点。当发生溢出时,对unsigned char 来说:255+1在保留后8位后,竟然又回到了0! 

        那么,我们稍微改一下图像:

        这样就生动表示了char型的  值域轮回了 。

推广到其他整形:

于是:

        1.基于对char型的理解,可以由此推广到整形家族:short,int,long,long long。

        2.知道了一个类型的长度,它们范围是可计算的。

        唯一不同的是,其他类型的长度大于1,所以就有了存储的顺序问题:

大小端: 

        超过⼀个字节的数据在内存中存储的时候,就有存储顺序的问题,按照不同的存储顺序,我们分为⼤端字节序存储和⼩端字节序存储,下⾯是具体的概念:


        ⼤端(存储)模式:是指数据的低位字节内容保存在内存的⾼地址处,⽽数据的⾼位字节内容,保存在内存的低地址处。
        ⼩端(存储)模式:是指数据的低位字节内容保存在内存的低地址处,⽽数据的⾼位字节内容,保存在内存的⾼地址处。

#include <stdio.h>
int main()
{
int a = 0x11223344;
return 0;
}

 

        地址由低到高,字节序也由低到高,我的机器是小端存储。 

为什么会有大小端?

        由于其他数据类型的长度大于1,所以必须有一种方法,来安排一个数据在内存中的存储顺寻问题。

 浮点型数据的存储:

        常见的浮点数:3.14159、1E10等,浮点数家族包括: float、double、long double 类型。
浮点数表⽰的范围在<float.h>中定义。
        根据国际标准IEEE 754,任意⼀个⼆进制浮点数V可以表⽰成下⾯的形式:


V = (-1) ^ S * M ∗ 2^E 


其中:

(-1)^S 表⽰符号位,当S=0,V为正数;当S=1,V为负数
 M表⽰有效数字,M是⼤于等于1,⼩于2的
2^E表示指数位

十进制的5.0,写成⼆进制是 101.0 ,相当于 1.01×2^2 。


        按照上面V的格式,可以得出S=0,M=1.01,E=2。


十进制的-5.0,写成⼆进制是 -101.0 ,相当于 -1.01×2^2 。

          则S=1,M=1.01,E=2。

存储格式:

         对于32位的浮点数,最⾼的1位存储符号位S,接着的8位存储指数E,剩下的23位存储有效数字M:

 

         对于64位浮点数,最高的1位存储符号位S,接着的11位存储指数E,剩下的52位存储有效数字M。


IEEE754的规定:


对于有效数字M:


        由于, 1≤M<2 ,也就是说,M可以写成 1.xxxxxx 的形式,其中 xxxxxx 表⽰⼩数部分。
在计算机内部保存M时,默认这个数的第⼀位总是1,因此可以被舍去,只保存后⾯的xxxxxx部分。

        比如保存1.01的时候,只保存01,等到读取的时候,再把第⼀位的1加上去。这样做的⽬的是节省1位有效数字。以32位浮点数为例,留给M只有23位,将第⼀位的1舍去以后,等于可以保存24位有效数字。


对于指数E:


        E为⼀个⽆符号整数(unsignedint),如果E为8位,它的取值范围为0~255;如果E为11位,它的取值范围为0~2047。

        但是,我们知道,科学计数法中的E是可以出现负数的,所以IEEE754规定,存⼊内存时E的真实值必须再加上⼀个中间数(偏移值)。

        对于8位的E,这个中间数是127;

        对于11位的E,这个中间数是1023。

        比如,2^10的E是10,所以保存成32位浮点数时,必须保存成10+127=137,即10001001。

这样就避免E在存储时出现负数的问题。

需要注意的是:

        并不是所有浮点数可以被精确储存,对于一个浮点数,单单是将他存入内存,再读取出来,也可能造成误差!

        浮点型变量能保存的数据也是有界的,虽然一般情况下,由于最大值很大,最小值接近于0,所以我们不会触碰到界限。

 


图片来源


完~

未经作者同意禁止转载

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/255076.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【Element-ui】Layout与Container组件

提示&#xff1a;文章写完后&#xff0c;目录可以自动生成&#xff0c;如何生成可参考右边的帮助文档 文章目录 前言一、Layout 布局1.1 基础布局1.2 分栏间隔1.3 混合布局1.4 分栏偏移1.5 对齐方式1.6 响应式布局1.7 el-col中的 push和pull 二、Container 布局容器2.1 Contain…

组合数学历年真题-西北工业大学-持续更新中~

组合数学历年考题使用说明 本文档设立的初衷是帮学弟学妹们获得一份免费且纯净的组合数学习题&#xff0c;把注意力和时间花在知识本身而不要浪费在筛选垃圾资料上。截止本文档创立时&#xff0c;学校并未提供官方习题内容&#xff0c;所有内容均为学长手动整理且部分为回忆版…

定义一个学生类,其中有3个私有数据成员学号、姓名、成绩,以及若于成员。 函数实现对学生数据的赋值和输出。

#include <stdio.h> // 定义学生类 typedef struct Student { int stuNum; // 学号 char name[20]; // 姓名&#xff0c;假设最长为20个字符 float score; // 成绩 } Student; // 初始化学生信息 void initializeStudent(Student *student, int num, const…

移动云“遇见大咖”|玻色量子副总裁巨江伟:超越摩尔定律的新型计算革命

移动云MVP&#xff0c;作为产品共建专家、关键意见领袖及技术布道者&#xff0c;帮助开发者更好地了解和使用移动云。开发者社区希望携手移动云MVP&#xff0c;与开发者共生、共赢、共成长。 8月31日&#xff0c;移动云开发者社区“遇见大咖”系列活动第2期——“[量子计算]超越…

《opencv实用探索·十二》opencv之laplacian(拉普拉斯)边缘检测,Scharr边缘检测,Log边缘检测

1、Laplacian算子 Laplacian&#xff08;拉普拉斯&#xff09;算子是一种二阶导数算子&#xff0c;其具有旋转不变性&#xff0c;可以满足不同方向的图像边缘锐化&#xff08;边缘检测&#xff09;的要求。同时&#xff0c;在图像边缘处理中&#xff0c;二阶微分的边缘定位能力…

MJPG-streamer方案实现物联网视频监控

目录 前言 一、JPEG&#xff0c;MJPG格式简介 JPEG MJPG MJPG的优点 MJPG的缺点 二、软硬件准备 三、编译MJPG-streamer 四、运行MJPG-streamer 五、其它常见用法 六、MJPG-streamer 程序框架 七、源码下载 前言 最近想做一个安防相关的项目&#xff0c;所以跟着韦…

Python语言基础知识(一)

文章目录 1、Python内置对象介绍2、标识符与变量3、数据类型—数字4、数据类型—字符串与字节串5、数据类型—列表、元组、字典、集合6、运算符和表达式7、运算符和表达式—算术运算符8、运算符和表达式—关系运算符9.1、运算符和表达式— 成员测试运算符in9.2、运算符和表达式…

jQuery ajax读取本地json文件 三级联动下拉框

步骤 1&#xff1a;创建本地JSON文件 {"departments": [{"name": "会计学院","code": "052"},{"name": "金融学院","code": "053"},{"name": "财税学院",&qu…

CRM客户管理系统,不止管理客户。

CRM系统现在已经成为企业与客户建立良好关系、提高销售业绩的优先选择。关于CRM的功能&#xff0c;不同的企业包括CRM软件厂商都对CRM系统有不同的定义。基于此&#xff0c;我们来聊聊CRM客户管理系统除了管客户还有什么功能&#xff1f; 1、客户管理 有些企业管理客户的方式…

探索低代码的潜力、挑战与未来展望

低代码开发作为一种新兴的开发方式&#xff0c;正在逐渐改变着传统的编程模式&#xff0c;低代码使得开发者无需编写大量的代码即可快速构建各种应用程序。然而&#xff0c;低代码也引发了一系列争议&#xff0c;有人称赞其为提升效率的利器&#xff0c;也有人担忧其可能带来的…

GUI的简单概述和基本使用

GUI的概念 1&#xff0c;到目前为止&#xff0c;我们编写的都是控制输入的程序&#xff0c;操作使用非常不直观&#xff0c;采取一直方式让效果呈现在窗口上。 2&#xff0c;GUI及图形界面指采用图像方式显示的用户界面&#xff0c;与早期计算机的命令行界面相比&#xff0c;…

文件拖拽操作工具 Dropzone 4 最新 for mac

Dropzone 4是一款Mac平台上的应用程序&#xff0c;提供了一个方便快捷的方式来执行各种任务。它可以将常用工具和操作整合到一个简洁的界面中&#xff0c;使用户能够更高效地完成日常工作。 以下是Dropzone 4的一些主要特点&#xff1a; 拖放功能&#xff1a;通过将文件、文件…