七轴开源协作机械臂myArm视觉跟踪技术!

 引言

ArUco标记是一种基于二维码的标记,可以被用于高效的场景识别和位置跟踪。这些标记的简单性和高效性使其成为机器视觉领域的理想选择,特别是在需要实时和高精度跟踪的场景中。结合机器学习和先进的图像处理技术,使用ArUco标记的机械臂系统可以实现更高级的自动化功能,如精确定位、导航和复杂动作的执行。

本案例旨在展示结合ArUco标记和机械臂运动控制技术,实现对机械臂的高精度控制和姿态跟踪。通过分析和解释脚本的不同组成部分,本文将探讨如何通过机器视觉识别技术和复杂的数据处理算法,来增强机械臂的操作能力。此外,还将展示机械臂在捕捉和响应环境变化方面的能力,以及如何通过编程和算法优化来提高整体系统的效率和准确性。

技术概述

机械臂-myArm 300 Pi

myArm 300 Pi是大象机器人最新出的一款七自由度的机械臂,搭载树莓派4B 4g芯片,专门为机器人定制了ubuntu mate 20.04操作系统。myArm提供了7自由度的灵活性,使它超越6自由度机器人,让机器人手臂的移动可以如同人类手臂一样灵活。

myArm内置接口可以进行超高难度的肘关节姿态变换,在实践教学中,可以用于机器人姿态研究、机器人运动路径规划学习、机器人冗余自由度的管理和利用、正逆运动学、ROS机器人开发环境、机器人应用开发、编程语言开发和底层数据处理等多种机器人相关的学科教育。开放了树莓派4B开发板和末端Atom近乎100%的硬件接口,可以搭配用户个人的树莓派4B及M5Atom的周边配件,进行个性化的场景开发,以满足不同用户的创意开发。

ArUco 码标记

ArUco 标记是一种二维条形码系统,它在机器视觉领域中被广泛用于标记检测和空间定位。这些标记由黑白图案组成,通常呈正方形,中心包含一个独特的二进制模式,使其能够被计算机视觉系统快速而准确地识别。

ArUco 标记的特点:

  • 唯一性:每个 ArUco 标记具有独特的编码,允许识别系统轻松区分不同的标记
  • 低成本:与其他高级定位系统相比,ArUco 标记不需要昂贵的设备或复杂的安装,可以直接打印ArUco标记。
  • 定位和导航:在机器视觉系统中,ArUco 标记被用作参考点,帮助机械臂或移动机器人定位自身位置或导航至特定位置。
  • 姿态估计:通过分析摄像头捕捉到的 ArUco 标记图像,系统能够计算出标记相对于摄像头的位置和方向(即姿态)。这对于精确控制机械臂或其他自动化设备至关重要。

相关软件和库

操作系统:Ubuntu mate 20.04

编程语言:Python 3.9+

主要功能包:pymycobot,OpenCV,numpy,math

  • pymycobot-控制机械臂运动的库,多种控制接口
  • OpenCV- 提供了丰富的图像处理和视频分析功能,包括对象检测,面部识别,运动跟踪,图形滤波等
  • Numpy-是一个核心科学计算哭,它提供了高性能的多维数组对象和工具,用于处理大量数据。
  • Math-提供了一系列基本的数学运算函数和常量,如三角函数、指数和对数函数、各种数学常数等。

系统设计与实现

物料准备

物料名称

数量

Computer Camera

1

myArm 300  Pi 

1

ArUco 标志物

1

Keyboard  and Mouse

1

Monitor

1

机械臂的姿态跟踪

  1. 定义:姿态跟踪通常指的是监测和记录一个物体在三维空间中的精确位置(平移)和方向(旋转),即其“姿态”。
  2. 技术应用:在机械臂的应用中,姿态跟踪涉及到实时监控和控制机械臂自身的各个关节和末端执行器的精确位置和方向。这通常需要复杂的传感器系统和算法,以实现高精度的控制。
  3. 用途:姿态跟踪对于执行精密的操作任务非常关键,如在制造业中的装配、焊接、在医疗领域中的外科手术辅助

项目组成部分

整个系统的架构主要分为以下几个部分:

  1. 硬件组成:机械臂,usb摄像头以及使用到的设备。
  2. 软件和控制系统:通过OpenCV识别ArUco 标记,控制算法,机械臂运动控制的系统来实现案例。
  3. 数据流程:用于图像的捕捉,图像处理,数据分析和转换,机械臂的执行。

功能实现

  1. 图像捕捉

使用到OpenCV捕获图像的方法

# 初始化摄像头
cap = cv2.VideoCapture(0) # 0代表默认摄像头的序号#读取图像帧
ret, frame = cap.read()#显示图像
cv2.imshow('video", frame)def capture_video():
    cap = cv2.VideoCapture(0)
    if not cap.isOpened():
        print("Can't open camera")
        return    try:
        while True:
            ret, frame = cap.read()
            if not ret:
                print("Can't read the pic from camera")
                break            cv2.imshow('Video Capture', frame)            # enter 'q'  quit 
            if cv2.waitKey(1) & 0xFF == ord('q'):
                break
    finally:
        cap.release()
        cv2.destroyAllWindows()

  1. 图像处理与ArUco标记识别

对摄像头捕获的图像进行处理以及对ArUco的标记码进行识别

#检测ArUco标记
    def detect_marker_corners(self, frame: np.ndarray) -> Tuple[NDArray, NDArray, NDArray]:
        # 灰度化
        gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
        corners : Any
        ids : Any
        rejectedImgPoints : Any
        corners, ids, rejectedImgPoints = self.detector.detectMarkers(gray)
        return corners, ids, rejectedImgPoints  #在图像中标记出ArUco码,并且在每个标志上绘制坐标轴  
    def draw_marker(self, frame: np.ndarray, corners, tvecs, rvecs, ids) -> None:
        # cv2.aruco.drawDetectedMarkers(frame, corners, None, borderColor=(0, 255, 0))
        cv2.aruco.drawDetectedMarkers(frame, corners, ids, borderColor=(0, 200, 200))
        for i in range(len(ids)):
            corner, tvec, rvec, marker_id = corners[i], tvecs[i], rvecs[i], ids[i]
            cv2.drawFrameAxes(frame, self.mtx, self.dist, rvec, tvec, 30, 2)while True:
            ret, frame = cap.read()
            corners, ids, rejectedImgPoints = aruco_detector.detect_marker_corners(frame)
             if ids is not None:
                detector.draw_marker(frame, corners, tvecs, rvecs, ids)
                ArucoDetector.draw_position_info(frame, corners, tvecs)           
            cv2.imshow('Video Capture', frame)            # enter 'q'  quit 
            if cv2.waitKey(1) & 0xFF == ord('q'):
                break

  1. 数据解析与处理

因为该案例要做的是姿态跟踪,所以我们在检测ArUco标记的时候得检测该姿态,标注每个旋转向量(rvec)和平移向量(tvecs),这些向量描述了标记相对于摄像头的三位位置和方向。

    def estimatePoseSingleMarkers(self, corners):"""
        This will estimate the rvec and tvec for each of the marker corners detected by:
           corners, ids, rejectedImgPoints = detector.detectMarkers(image)
        corners - is an array of detected corners for each detected marker in the image
        marker_size - is the size of the detected markers
        mtx - is the camera matrix
        distortion - is the camera distortion matrix
        RETURN list of rvecs, tvecs, and trash (so that it corresponds to the old estimatePoseSingleMarkers())
        """
        marker_points = np.array([[-self.marker_size / 2, self.marker_size / 2, 0],[self.marker_size / 2, self.marker_size / 2, 0],[self.marker_size / 2, -self.marker_size / 2, 0],[-self.marker_size / 2, -self.marker_size / 2, 0]], dtype=np.float32)
        rvecs = []
        tvecs = []for corner in corners:
            corner : np.ndarray
            retval, rvec, tvec = cv2.solvePnP(marker_points, corner, self.mtx, self.dist, None, None, False, 
                                              cv2.SOLVEPNP_IPPE_SQUARE)if retval:
                rvecs.append(rvec)
                tvecs.append(tvec)        rvecs = np.array(rvecs)
        tvecs = np.array(tvecs)(rvecs - tvecs).any()return rvecs, tvecs

捕获数据的时候会大量的数据,为了提高检测的准确性需要使用滤波器来进行对数据的处理。

用到了中值滤波器,平均滤波器还有二阶滤波器。

中值滤波器:中值滤波器非常有效于去除所谓的“椒盐”噪声,同时保持信号的边缘信息。它在图像处理中常用于去除噪点,同时不会使图像模糊。

平均滤波器:平均滤波器常用于去除随机噪声、平滑和软化数据。在图像处理中,它可以用于平滑图像,但可能会导致边缘信息丢失,可以看到图像处理过后会模糊一些。

二阶滤波器:精确控制信号频率成分时使用,例如在信号处理和控制系统中,用于减少振荡和提高稳定性,特别是在姿态估计和精确运动控制中。

def median_filter(pos, filter, filter_len):if not np.any(filter):# 如果滤波器为空,用pos填充滤波器filter[:] = pos# 将pos加入滤波器filter[filter_len - 1] = pos# 移动滤波器中的元素for i in range(filter_len - 1):filter[i] = filter[+ 1]# 计算中值并存储到输出数组中
    output = np.median(filter)return outputdef Average_filter(pos, filter, filter_len):if not np.any(filter):# 如果滤波器为空,用pos填充滤波器filter[:] = pos# 将pos加入滤波器filter[filter_len - 1] = pos# 移动滤波器中的元素for i in range(filter_len - 1):filter[i] = filter[+ 1]# 计算中值并存储到输出数组中
    output = np.mean(filter)return output
def twoorder_filter_single_input(input):global prev1global prev2global prev_out1global prev_out2if np.array_equal(prev1, np.zeros(3)):
        output, prev1, prev_out1 = input, input, inputreturn outputif np.array_equal(prev2, np.zeros(3)):
        prev2, prev_out2 = prev1, prev_out1
        output, prev1, prev_out1 = input, input, inputreturn output    fc = 20   # Hz 截止频率 (设计的滤波器频率)
    fs = 100  # Hz 斩波频率  (采样频率)
    Ksi = 10  # 品质因数    temp1 = (2 * 3.14159 * fc)**2
    temp2 = (2 * fs)**2
    temp3 = 8 * 3.14159 * fs * Ksi * fc
    temp4 = temp2 + temp3 + temp1    K1 = temp1 / temp4
    K2 = 2 * K1
    K3 = K1
    K4 = 2 * (temp1 - temp2) / temp4
    K5 = (temp1 + temp2 - temp3) / temp4    output = K1 * prev2 + K2 * prev1 + K3 * input - K4 * prev_out2 - K5 * prev_out1# 更新全局变量
    prev2, prev1, prev_out2, prev_out1 = prev1, input, prev_out1, outputreturn output

从检测到的标记(如ArUco标记)中提取机械臂或相机的姿态信息,并对提取的角度数据进行滤波处理,最终获得目标的坐标。

  1. 机械臂控制命令生成

在机械臂运动控制的方式上,我们得设置它的运动模式

# Set end coordinate system 1-tool
arm.set_end_type(1)
time.sleep(0.03)
# Set tool coordinate system
arm.set_tool_reference([-50, 0, 20, 0, 0, 0])
time.sleep(0.03)
# Set command refresh mode
arm.set_fresh_mode(0)
time.sleep(0.03)

在获取到目标坐标,就得发送给机械臂去执行命令。

from pymycobot import MyArm
arm = MyArm("COM11",debug=False)
# 发送坐标控制机械臂运动
arm.send_coords(target_coords, 10, 2)

关键技术点

关键的技术点主要在几个方面:

  • ArUco 检测:

ArUco 标记的检测是整个系统运行的基础。通过摄像头识别这些标记,系统能够获取关于标记位置和方向的关键信息。这些信息对于机械臂的精确控制和操作至关重要,尤其是在需要精确位置调节的应用中,如在自动化、机器人编程和增强现实中。

使用图像处理技术,用openCV库从摄像头捕获的图像中识别标记,并且提取他们的位置和姿态信息。

  • 滤波技术:

在处理图像数据或机械臂传感器数据时,滤波技术是保证数据质量和系统稳定性的关键。它们帮助去除数据中的噪声和误差,从而提高系统的准确性和可靠性。

  • 机械臂控制:

在开始实现机械臂姿态跟踪前提,需要设置其运动模式。确保机械臂的运动与预期任务相匹配、提高操作的精度和可靠性非常关键。通过调整坐标系统、工具参考点和指令执行方式,可以使机械臂更加适应特定的操作环境和任务需求。

https://twitter.com/i/status/1733806097050558951

总结

在该项目中,深入了解图像处理和机器视觉的原理,特别是ArUco标记检测和位姿最终方面。可以掌握各种滤波技术的应用,理解它们在提高数据质量和系统性能中的重要。总而言之,该项目可以实践应用各个方面。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/285358.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

「数据结构」二叉树1

🎇个人主页:Ice_Sugar_7 🎇所属专栏:C启航 🎇欢迎点赞收藏加关注哦! 文章目录 🍉树🍉二叉树🍌特殊二叉树🍌二叉树的性质🍌存储结构 🍉…

Linux-----21、挂载

# 挂载命令 将硬件资源,或文件资源💿,和📂空目录🔗连接起来的过程 # mount linux 所有存储设备都必须挂载使用,包括硬盘 ​ 命令名称:mount ​ 命令所在路径:/bin/mount ​ 执行…

JavaWeb编程语言—登录校验

一、前言&简介 前言:小编的上一篇文章“JavaWeb编程语言—登录功能实现”,介绍了如何通过Java代码实现通过接收前端传来的账号、密码信息来登录后端服务器,但是没有实现登录校验功能,这代表着用户不需要登录也能直接访问服务器…

Qt-QTransform介绍与使用

QTransform是一个用于二维坐标系转换的类。我们知道Qt的坐标系是左上角为原点,x轴向右,y轴向下,屏幕上每个像素代表一个单位,那么,如果我们想要在屏幕上建立自己的坐标系用于绘制,就需要借助QTransform。 …

11.1 Linux 设备树

一、什么是设备树? 设备树(Device Tree),描述设备树的文件叫做 DTS(DeviceTree Source),这个 DTS 文件采用树形结构描述板级设备,也就是开发板上的设备信息: 树的主干就是系统总线, IIC 控制器、 GPIO 控制…

python图像二值化处理

目录 1、双峰法 2、P参数法 3、迭代法 4、OTSU法 图像的二值化处理是将图像上的像素点的灰度值设置为0或255,也就是将整个图像呈现出明显的只有黑和白的视觉效果。二值化是图像分割的一种最简单的方法,可以把灰度图像转换成二值图像。具体实现是将大…

八.创建和管理表

目录 1. 基础知识1.1 一条数据存储的过程1.2 标识符命名规则1.3 MySQL中的数据类型 2. 创建和管理数据库2.2 使用数据库2.3 修改数据库 3. 创建表3.1 创建方式13.2 创建方式23.4 查看数据表结构 4. 修改表4.1 追加一个列4.2 修改一个列4.3 重命名一个列4.4 删除一个列 5. 重命名…

Python学习之复习MySQL-Day8(事务)

目录 文章声明⭐⭐⭐让我们开始今天的学习吧!事务简介事务操作模拟转账操作开启事务提交事务回滚事务查看/设置事务提交方法实例演示 事务四大特性并发事务问题分类 事务隔离级别分类查看/设置事务隔离级别实例演示 文章声明⭐⭐⭐ 该文章为我(有编程语…

Mongodb复制集架构

目录 复制集架构 复制集优点 复制集模式 复制集搭建 复制集常用命令 复制集增删节点 复制集选举 复制集同步 oplog分析 什么是oplog 查看oplog oplog大小 复制集架构 复制集优点 数据复制: 数据在Primary节点上进行写入,然后异步地复制到Secondary节点&a…

Axure交互样式,交互事件,交互动作,情形基本介绍及使用,完成ERP的菜单跳转到各个页面的跳转案例,省市联动案例,下拉刷新案例

目录 一.Axure交互样式 二.交互事件 三.情形 四.交互动作 五. 完成ERP的菜单跳转到各个页面的跳转 ​编辑 五. 省市联动 ​六.下拉刷新 一.Axure交互样式 鼠标悬停;鼠标按下;选中;禁用;获取焦点; 悬停就是鼠标放上去时,按下是鼠标左键单击,选中是…

Unity中URP下的顶点偏移

文章目录 前言一、实现思路二、实现URP下的顶点偏移1、在顶点着色器中使用正弦函数,实现左右摇摆的效果2、在正弦函数的传入参数中,加入一个扰度值,实现不规则的顶点偏移3、修改正弦函数的振幅 A,让我们的偏移程度合适4、修改正弦…

mysql中的server_id到底有什么用?详解mysql配置中的server_id配置项

当我们搭建MySQL集群时,自然需要完成数据库的主从同步来保证数据一致性。而主从同步的方式也分很多种,一主多从、链式主从、多主多从,根据你的需要来进行设置。但只要你需要主从同步,就一定要注意server-id的配置,否则…