【数据结构入门精讲 | 第十七篇】一文讲清图及各类图算法

在上一篇中我们进行了的并查集相关练习,在这一篇中我们将学习图的知识点。

在这里插入图片描述

目录

    • 概念
    • 深度优先DFS
      • 伪代码
    • 广度优先BFS
      • 伪代码
    • 最短路径算法(Dijkstra)
      • 伪代码
    • Floyd算法
    • 拓扑排序
    • 逆拓扑排序

概念

下面介绍几种在对图操作时常用的算法。

深度优先DFS

深度优先搜索(DFS)是一种用于遍历或搜索树、图等数据结构的基本算法。该算法从给定的起点开始,沿着一条路径直到达到最深的节点,然后再回溯到上一个节点,继续探索下一条路径,直到遍历完所有节点或者找到目标节点为止。

具体步骤如下:

  1. 标记起始节点为已访问。

  2. 访问当前节点,并获取其所有邻居节点。

  3. 遍历所有邻居节点,如果该邻居节点未被访问过,则递归地对该邻居节点进行深度优先搜索。

  4. 重复步骤2和步骤3,直到所有能够到达的节点都被访问过。

DFS算法使用了递归或者栈的机制,在每一轮中尽可能深入地探索,并且只有在到达死胡同(无法继续深入)时才会回溯。DFS并不保证先访问距离起始节点近的节点,而是以深度为导向。

DFS算法可以用于寻找路径、生成拓扑排序、解决回溯问题等,但不保证找到最短路径。其时间复杂度为O(V+E),其中V表示节点数,E表示边数。在树或图的遍历中,DFS通常占用的空间较少,但在最坏情况下可能需要使用大量的栈空间。

简单来说,DFS遵循悬崖勒马回头是岸的原则

拿下图举例:从0一直完左走,走到3,发现没路可走后,回头,继续寻找。

在这里插入图片描述
所以:图的深度优先遍历类似于二叉树的先序遍历

伪代码

# 定义图的数据结构
graph = {'A': ['B', 'C'],'B': ['D', 'E'],'C': ['F'],'D': [],'E': ['F'],'F': []
}# 定义访问状态数组
visited = {}# 初始化访问状态
for node in graph:visited[node] = False# 定义DFS函数
def dfs(node):# 标记当前节点为已访问visited[node] = Trueprint(node, end=' ')# 遍历当前节点的邻接节点for neighbor in graph[node]:# 如果邻接节点未被访问,则递归调用DFS函数if not visited[neighbor]:dfs(neighbor)# 从起始节点开始进行DFS
start_node = 'A'
dfs(start_node)

广度优先BFS

广度优先搜索(BFS)是一种用于遍历或搜索树、图等数据结构的基本算法。该算法从给定的起点开始,按照距离递增的顺序依次访问其所有邻居节点,并将这些邻居节点加入到一个队列中进行遍历,直到访问到目标节点或者遍历完所有节点。

具体步骤如下:

  1. 创建一个队列,将起始节点加入队列中并标记为已访问。

  2. 循环执行以下步骤,直到队列为空:

    • 弹出队列头部的节点。
    • 访问当前节点,并获取其所有邻居节点。
    • 遍历所有邻居节点,如果该邻居节点未被访问过,则将其加入队列尾部,并标记为已访问。
  3. 循环结束后,所有能够从起始节点到达的节点都已经被访问过了。

BFS算法可以用于寻找最短路径或者解决迷宫等问题,其时间复杂度为O(V+E),其中V表示节点数,E表示边数。相对于深度优先搜索,BFS搜索更具有层次性,能够保证先访问距离起始节点近的节点,因此在寻找最短路径时更为有效。

如何对一个图进行广度优先遍历呢?

方法是:每一层从左到右进行遍历

在这里插入图片描述
比如下图的结果就是1、2、3、5、6、4、7

在这里插入图片描述
所以图的广度优先遍历类似于树的层次遍历

伪代码

# 定义图的数据结构
graph = {'A': ['B', 'C'],'B': ['D', 'E'],'C': ['F'],'D': [],'E': ['F'],'F': []
}# 定义访问状态数组
visited = {}# 初始化访问状态
for node in graph:visited[node] = False# 定义BFS函数
def bfs(start_node):# 创建队列并将起始节点入队queue = []queue.append(start_node)visited[start_node] = Truewhile queue:# 取出队首节点current_node = queue.pop(0)print(current_node, end=' ')# 遍历当前节点的邻接节点for neighbor in graph[current_node]:# 如果邻接节点未被访问,则将其入队并标记为已访问if not visited[neighbor]:queue.append(neighbor)visited[neighbor] = True# 从起始节点开始进行BFS
start_node = 'A'
bfs(start_node)

最短路径算法(Dijkstra)

Dijkstra算法是一种用于解决带权重图中单源最短路径问题的经典算法。它能够找到从起始节点到其他所有节点的最短路径。

该算法的基本思想是通过逐步扩展已知最短路径来逐步确定起始节点到其他节点的最短路径。它维护一个距离字典,记录从起始节点到每个节点的当前最短距离,并使用一个优先队列按照距离的大小进行节点的选择和访问。

具体步骤如下:

  1. 创建一个距离字典,并将所有节点的距离初始化为无穷大,将起始节点的距离设置为0。

  2. 将起始节点加入优先队列。

  3. 循环执行以下步骤,直到优先队列为空:

    • 从优先队列中取出距离最小的节点,作为当前节点。
    • 遍历当前节点的所有邻居节点:
      • 计算从起始节点到当前邻居节点的新距离,即当前节点的距离加上当前节点到邻居节点的边的权重。
      • 如果新距离小于邻居节点的当前距离,则更新邻居节点的距离为新距离,并将邻居节点加入优先队列。
  4. 循环结束后,距离字典中记录了从起始节点到所有其他节点的最短距离。

Dijkstra算法适用于有向图或无向图,但要求图中的边权重必须为非负值。它是一种贪心算法,在每一步都选择当前距离最小的节点进行扩展,直到到达目标节点或遍历完所有节点。该算法的时间复杂度为O((|V|+|E|)log|V|),其中|V|是节点数,|E|是边数。

伪代码

# 定义图的数据结构
graph = {'A': {'B': 5, 'C': 3},'B': {'A': 5, 'C': 1, 'D': 6},'C': {'A': 3, 'B': 1, 'D': 2},'D': {'B': 6, 'C': 2}
}# 定义起始节点和终止节点
start_node = 'A'
end_node = 'D'# 定义距离字典和前驱节点字典
distances = {}
predecessors = {}# 初始化距离字典和前驱节点字典
for node in graph:distances[node] = float('inf')  # 将所有节点的距离初始化为无穷大predecessors[node] = None# 设置起始节点的距离为0
distances[start_node] = 0# 定义辅助函数:获取未访问节点中距离最小的节点
def get_min_distance_node(unvisited):min_distance = float('inf')min_node = Nonefor node in unvisited:if distances[node] < min_distance:min_distance = distances[node]min_node = nodereturn min_node# Dijkstra算法主体
unvisited = set(graph.keys())
while unvisited:current_node = get_min_distance_node(unvisited)unvisited.remove(current_node)if current_node == end_node:breakfor neighbor, weight in graph[current_node].items():distance = distances[current_node] + weightif distance < distances[neighbor]:distances[neighbor] = distancepredecessors[neighbor] = current_node# 重构最短路径
path = []
current_node = end_node
while current_node != start_node:path.insert(0, current_node)current_node = predecessors[current_node]
path.insert(0, start_node)# 输出结果
print("最短路径:", path)
print("最短距离:", distances[end_node])

Floyd算法

Floyd算法也称为插点法,是一种用于寻找图中所有节点对之间最短路径的算法,同时也可以用于检测图中是否存在负权回路。

Floyd算法采用动态规划的思想,通过不断更新两个节点之间经过其他节点的最短距离来求解任意两个节点之间的最短路径。具体而言,算法维护一个二维数组 dp,其中 dp[i][j] 表示从节点 i 到节点 j 的最短路径长度。初始化时,若存在一条边从节点 i 到节点 j,则 dp[i][j] 的初值为这条边的边权;否则,dp[i][j] 被赋值为一个足够大的数,表示节点 i 无法到达节点 j。

接下来,我们通过枚举一个中间节点 k,来更新所有节点对之间的最短路径长度。具体而言,如果 dp[i][j] > dp[i][k] + dp[k][j],则说明从节点 i 到节点 j 经过节点 k 的路径比当前的最短路径还要短,此时可以更新 dp[i][j] 的值为 dp[i][k] + dp[k][j]。

重复执行上述步骤,直到枚举完所有的中间节点 k,即可得到任意两个节点之间的最短路径长度。如果在更新过程中发现某些节点之间存在负权回路,则说明无法求解最短路径。

#define INF 99999
#define V 4void floydWarshall(int graph[V][V]) {int dist[V][V], i, j, k;// 初始化最短路径矩阵为图中的边权值for (i = 0; i < V; i++)for (j = 0; j < V; j++)dist[i][j] = graph[i][j];// 动态规划计算最短路径for (k = 0; k < V; k++) {for (i = 0; i < V; i++) {for (j = 0; j < V; j++) {// 如果经过顶点k的路径比直接路径更短,则更新最短路径if (dist[i][k] + dist[k][j] < dist[i][j])dist[i][j] = dist[i][k] + dist[k][j];}}}// 打印最终的最短路径矩阵for (i = 0; i < V; i++) {for (j = 0; j < V; j++) {// 如果路径为无穷大,则打印INF;否则打印最短路径值if (dist[i][j] == INF)printf("%7s", "INF");elseprintf("%7d", dist[i][j]);}printf("\n");}
}

拓扑排序

拓扑排序和逆拓扑排序都是用于对有向无环图进行排序的算法。

拓扑排序:对于一个有向无环图,拓扑排序可以得到一组节点的线性序列,使得对于任何一个有向边 (u, v),在序列中节点 u 都排在节点 v 的前面。以下是拓扑排序的伪代码:

# 定义图的数据结构
graph = {'A': ['B', 'C'],'B': ['D', 'E'],'C': ['F'],'D': [],'E': ['F'],'F': []
}# 定义入度字典
in_degree = {}# 初始化入度字典
for node in graph:in_degree[node] = 0for node in graph:for neighbor in graph[node]:in_degree[neighbor] += 1# 定义队列并将入度为0的节点加入队列
queue = []
for node in in_degree:if in_degree[node] == 0:queue.append(node)# 进行拓扑排序
result = []
while queue:current_node = queue.pop(0)result.append(current_node)for neighbor in graph[current_node]:in_degree[neighbor] -= 1if in_degree[neighbor] == 0:queue.append(neighbor)# 输出结果
print(result)

逆拓扑排序

逆拓扑排序:与拓扑排序相反,逆拓扑排序可以得到一组节点的线性序列,使得对于任何一个有向边 (u, v),在序列中节点 v 都排在节点 u 的前面。以下是逆拓扑排序的伪代码:

# 定义图的数据结构
graph = {'A': ['B', 'C'],'B': ['D', 'E'],'C': ['F'],'D': [],'E': ['F'],'F': []
}# 定义出度字典
out_degree = {}# 初始化出度字典
for node in graph:out_degree[node] = len(graph[node])# 定义队列并将出度为0的节点加入队列
queue = []
for node in out_degree:if out_degree[node] == 0:queue.append(node)# 进行逆拓扑排序
result = []
while queue:current_node = queue.pop(0)result.append(current_node)for neighbor in graph[current_node]:out_degree[neighbor] -= 1if out_degree[neighbor] == 0:queue.append(neighbor)# 输出结果
print(result)

至此,图的知识点就介绍完了,在下一篇中我们将进行图的专项练习。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/296751.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

记一次 Nginx 调参的踩坑经历

最近在基于SSE&#xff08;Server Sent Events&#xff09;做服务端单向推送服务&#xff0c;本地开发时一切顺利&#xff0c;但是在部署到预发环境时就碰到1个很诡异的问题&#xff0c;这里需要简单介绍下我们的整体架构&#xff1a; 整体架构 可以看到所有的请求都会先到统一…

STM32移植LVGL图形库

1、问题1&#xff1a;中文字符keil编译错误 解决方法&#xff1a;在KEIL中Options for Target Flash -> C/C -> Misc Controls添加“--localeenglish”。 问题2&#xff1a;LVGL中显示中文字符 使用 LVGL 官方的在线字体转换工具&#xff1a; Online font converter -…

阿里云Code的代码仓库忘了升级导致现在找不到了怎么办?

阿里云Code的代码仓库忘了升级了&#xff0c;找不到了怎么办&#xff1f;如何找回丢失的阿里云代码? 1.1 问题背景1.2 修复方案 1.1 问题背景 众所周知&#xff0c;在之前&#xff0c;阿里云代码仓库托管使用的是 code.aliyun.com,后来迁移到了 codeup.aliyun.com &#xff0…

解锁JDK 12的奇妙之旅:新特性详解

欢迎来到我的博客&#xff0c;代码的世界里&#xff0c;每一行都是一个故事 解锁JDK 12的奇妙之旅&#xff1a;新特性详解 前言switch表达式拓展NumberFormat对复杂数字的格式化字符串支持transform、indent操作新增方法Files.mismatch(Path, Path)Teeing Collector支持unicode…

map容器的基本使用

文章目录 mapmap模板参数默认构造迭代器[ ]{ }inserterasefindlower_bound && upper_boundcountequal_range map和set容器&#xff0c;multimap和multiset是树形结构的关联式容器&#xff0c;这四种容器底层原理都是红黑树&#xff0c;容器中的元素是一个有序序列。 ma…

Windows系统安装 ffmpeg

下载及解压 ffmpeg官方下载地址&#xff1a;https://ffmpeg.org/download.html 下载好后将其解压至你想保存的位置中。 环境变量设置 打开Windows设置&#xff0c;在搜索框输入&#xff1a;系统高级设置。 新建环境变量&#xff0c;并输入bin目录具体位置。 安装检查 按住 w…

Ubuntu 系统的基础操作和使用

文章目录 前言常用命令1. 基本操作lscdpwd 2. 对文件的操作touchcatechovim 3. 对目录的操作mkdirrm 4. 移动文件 / 目录的操作cpmv 5. 总结基本操作6. 必不可少的实用操作mangreppsnetstat 总结 前言 本文内容为一些超常用命令, 内容不多且十分实用, 这些命令是每一个开发人员…

Head First Design Patterns - 策略模式

策略模式 策略模式&#xff1a;策略模式是一种行为型模式&#xff0c;它将对象和行为分开&#xff0c;将行为定义为 一个行为接口 和 具体行为的实现。策略模式最大的特点是行为的变化&#xff0c;行为之间可以相互替换。每个if判断都可以理解为就是一个策略。本模式使得算法可…

每日一练(编程题-C/C++)

目录 CSDN每日一练1. 2023/2/27- 一维数组的最大子数组和(类型&#xff1a;数组 难度&#xff1a;中等)2. 2023/4/7 - 小艺照镜子(类型&#xff1a;字符串 难度&#xff1a;困难)3. 2023/4/14 - 最近的回文数(难度&#xff1a;中等)4. 2023/2/1-蛇形矩阵(难度&#xff1a;困难)…

算法通关村第十关—归并排序(黄金)

归并排序 一、归并排序原理 归并排序(MERGE-SORT)简单来说就是将大的序列先视为若干个比较小的数组&#xff0c;分成几个比较小的结构&#xff0c;然后是利用归并的思想实现的排序方法&#xff0c;该算法采用经典的分治策略&#xff08;分就是将问题分(divide)成一些小的问题分…

BIT-6-指针(C语言初阶学习)

1. 指针是什么 2. 指针和指针类型 3. 野指针 4. 指针运算 5. 指针和数组 6. 二级指针 7. 指针数组 1. 指针是什么&#xff1f; 指针是什么&#xff1f; 指针理解的2个要点&#xff1a; 指针是内存中一个最小单元的编号&#xff0c;也就是地址平时口语中说的指针&#xff0c;通常…

【FPGA】分享一些FPGA视频图像处理相关的书籍

在做FPGA工程师的这些年&#xff0c;买过好多书&#xff0c;也看过好多书&#xff0c;分享一下。 后续会慢慢的补充书评。 【FPGA】分享一些FPGA入门学习的书籍【FPGA】分享一些FPGA协同MATLAB开发的书籍 【FPGA】分享一些FPGA视频图像处理相关的书籍 【FPGA】分享一些FPGA高速…