1.2.0 IGP高级特性之FRR

理论部分参考文档:Segment Routing TI-LFA FRR保护技术 - 华为

一、快速重路由技术

FRR(Fast Reroute)快速重路由

实现备份链路的快速切换,也可以与BFD联动实现对故障的快速感知。

随着网络的不断发展,VoIP在线视频等业务对实时性的要求越来越高,而OSPF故障恢复的时间远远超过了50ms,不能满足此类网络业务对实时性的要求。

OSPF IP FRRBFD联动可以实现50ms级的切换。OSPF IP FRR提前计算好备份链路的方式,BFD实现主链路出现故障时可以快速感知并使流量快速切换到备份链路上,保证流量不中断,从而达到保护流量的目的,因此极大的提高了OSPF网络的可靠性。

FRR技术适用于网络中对于丢包、延时非常敏感的业务。

二、工作原理

FRR的核心工作原理是提前为路由协议计算好备份链路,使得确认主链路故障之后,可以快速切换至备份链路进行转发流量,而不发再次去计算拓扑及路由后再进行流量转发。

如何计算备份链路?

FRR使用到的一种算法:LFA(Loop-free alternate)无环路备份路径

LFA的原理是找到一个非主下一跳(即不是最短转发路径上的下一跳)的邻居节点,如果这个邻居节点目的节点的最短路径不经过源节点,则这个邻居节点为无环备份下一跳。

关于以上名词介绍:源节点、邻居节点、目的节点、最短转发路径

S为运行LFA计算的源节点,N为邻居节点,D为目的节点

最短路径即由LSP计算链路开销得出的到达目的节点的最优转发路径(开销最小的路径)

在这里插入图片描述

LFA保护分为链路保护节点保护两种场景。

(1)LFA链路保护

链路保护场景可用如下公式计算无环下一跳:

  • Distance_opt(A,B),计算A至B之间的链路开销之和
  • 要想使FRR成功计算出备份链路,需要网络开销满足链路保护公式,否则无法计算出备份路由!

LFA链路保护即:备份的下一跳(邻居节点目的节点)的开销要小于< (邻居节点源节点)及(源节点目的节点)的开销之和。

公式一:Distance_opt(N, D) < Distance_opt(N, S) + Distance_opt(S, D)

LFA链路保护原理如下图:

在这里插入图片描述

可能会疑惑,为啥开销一定需要满足(N, D) <(N,S)+(S,D)呢?

  • 主要原来还是因为开销配置不当会出现短暂环路的情况。
  • 如下图,虽然看起来主备链路开销规划的很好,主用链路也是正确走向(即PE1去PE2,走PE1-PE4)。

在这里插入图片描述

  • 但邻居节点N(P2)去往PE2,走的却是P1-P4,而不是P2-P3-P4,因为ND开销=9,NSED=8。
  • 所以当链路故障之后,S马上将流量转发给N(红线1),由于N去往D最短路径走S,故流量重新回到S(蓝线2),S再…(红线3)因此出现环路。
  • 直到N重新完成网络收敛之后,流量才会正常转发。

在这里插入图片描述

(2)LFA节点保护

当发生节点故障时,流量需要从最短路径上S的**下一跳节点(E)**绕行,故需要计算下一跳节点到目的节点及邻居节点之间的开销,防止出现环路情况。

所以如果邻居节点同时满足下述公式,则该邻居满足节点保护条件。

公式二:Distance_opt(N, D) < Distance_opt(N, E) + Distance_opt(E, D)

LFA节点保护原理如下图:

在这里插入图片描述

如果链路开销不满足时:

  • 虽然主用链路路径正确,即PE1去PE2走的是SED。
  • 但邻居节点N去往PE2,走的却是SED,而不是直接ND,因为ND开销=6,NSED=5。

在这里插入图片描述

  • 当主链路E节点设备故障之后,S马上将流量转发给N(红线1),由于N去往D最短路径走S,故流量重新回到S(蓝线2),S再…(红线3)因此出现环路。

在这里插入图片描述

  • 应用FRR技术之后,需要满足以上两种LFA保护公式才能成功计算出备份路径,否则FRR不生效,无法生成备份路径。

其它LFA算法

除了LFA算法外,还有RLFA(remote loop-free alternates)远端无环路备份路径、TI-LFA(Topology Independent LFA)拓扑无关的无环路备份路径,各算法各有利弊。

(1)RLFA

起因:

  • 虽然LFA在网格状拓扑中通常能够获得较好的覆盖范围,但是针对环网,LFA的覆盖范围很低。

  • 为了提升保护范围,产生了RLFA技术,用于提升FRR保护范围。

优点:

  • RLFA将LFA节点的计算范围扩大到了远端节点,而不仅限于邻居节点,从而提高了LFA计算的成功概率。

缺点:

  • 仍然存在与LFA算法同样的缺陷,即网络开销不满足保护公式时算法失效。

工作原理

RLFA的基本原理是在远端找到一个LFA节点(通常称为PQ节点),然后使得S节点与PQ节点之间建立隧道进行流量转发。因为该节点是去往源和目的无环的一台设备,所以通过隧道将流量转发给PQ节点由它来进行转发给目的/源可保证链路故障后不会出现短暂环路现象。

这个PQ节点需要满足两个条件:

  1. PQ节点源节点(也即受保护链路的源端节点)于故障收敛前的最短路径(Pre-convergence Shortest Path)可达,且路径不经过受保护链路。
  2. PQ节点可以通过最短路径到达受保护链路的对端节点(E节点),且路径不经过受保护链路。

RLFA保护也分为链路保护和节点保护两种场景。

关于RLFA的相关名词解析
概念解释
P空间以保护链路源端为根节点建立SPF树,所有从根节点不经过保护链路可达的节点集合称为P空间。
扩展P空间以保护链路源端的所有邻居为根节点分别建立SPF树,所有从根节点不经过保护链路可达的节点集合称为扩展P空间。
**说明:**华为设备在计算RLFA FRR备份路径时,默认计算扩展P空间。
Q空间以保护链路末端为根节点建立反向SPF树,所有从根节点不经过保护链路可达的节点集合称为Q空间。
P节点P空间、扩展P空间的节点称为P节点。
Q节点Q空间的节点称为Q节点。
PQ节点在(扩展)P空间又在Q空间的节点,PQ节点会作为保护隧道的目的端

P空间内P节点,保证P到S节点不存在故障后出现微环的情况。

Q空间内Q节点,保证Q到D节点不存在故障后出现微环的情况。

处于P空间与Q空间中的节点设备,则具备有去往源目节点都不会环路的能力(下图中的P3设备)

故只需要使S与P3建立一条隧道,该隧道便是PE1-PE2的备用链路。

在这里插入图片描述

RLFA链路保护

P节点的计算公式如下:

公式三:Distance_opt(N, P) < Distance_opt(N, S) + Distance_opt(S, P)

套用公式进行计算得出,满足P节点公式的只有P2、P3设备。

Q节点的计算公式如下:

公式四:Distance_opt(Q, D) < Distance_opt(Q, S) + Distance_opt(S, D)

套用公式进行计算得出,满足Q节点公式的只有PE2、P4、P3设备。

在这里插入图片描述

为啥PQ节点如此计算

其实与LFA算法一致,主要还是为了防止保护链路在故障之后,出现微环的情况。

如P节点计算,以P3作为P节点,故NP=3,NS=8,SP=12,满足公式。

如果链路开销设置不合理

  • 在未故障前,流量正常通过P1-P4转发。
  • 故障之后,因为P2去往PE2最优路径下一跳是P1,故存在微环风险。
  • 同时套用公式可以看出:NP=30,NS=8,SP=17,不满足公式。

在这里插入图片描述

RLFA节点保护

P节点的计算公式如下:

公式五:Distance_opt(N, P) < Distance_opt(N, E) + Distance_opt(E, P)

Q节点的计算公式如下:

公式六:Distance_opt(Q, D) < Distance_opt(Q, E) + Distance_opt(E, D)

在这里插入图片描述

其中规律

此时拿出LFA的保护公式与RLFA的保护公式进行对比记忆:

LFA链路保护:Distance_opt(N, D) < Distance_opt(N, S) + Distance_opt(S, D)

RLFA链路保护-P节点:Distance_opt(N, P) < Distance_opt(N, S) + Distance_opt(S, P)

RLFA链路保护-Q节点:Distance_opt(Q, D) < Distance_opt(Q, S) + Distance_opt(S, D)

以链路保护为例,可以看到明显有变化与没有变化的地方。

将LFA公式中的D节点换成P节点,即成为了RLFA-P节点的计算公式。

将LFA公式中的N节点换成Q节点,即成为了RLFA-Q节点的计算公式。

P节点:计算S至D的下一跳节点(P节点)是否存在环路问题,可将其它设备作为P节点设备进行计算,判断是否还存在其它设备可成为下一跳P节点且不出现环路问题。最终这些P节点的集成就是P空间。

Q节点:计算D至S的下一跳节点(Q节点)是否存在环路问题,与P节点一致,计算出所有可成为下一跳Q节点的设备集成为Q空间。

LFA节点保护:Distance_opt(N, D) < Distance_opt(N, E) + Distance_opt(E, D)

RLFA节点保护-P节点:Distance_opt(N, P) < Distance_opt(N, E) + Distance_opt(E, P)

RLFA节点保护-Q节点:Distance_opt(Q, D) < Distance_opt(Q, E) + Distance_opt(E, D)

节点保护一致。

P节点保护S至D在故障时不出现环路问题,故LFA公式中将D换成P即成为RLFA-P节点公式。

Q节点保护D至S在故障时不出现环路问题,故LFA公式中将N换成Q即成为RLFA-Q节点公式。

理解之后,只需要记忆LFA的两个公式即可推理出其它公式。

(2)TI-LFA

起因:

  • 为了解决RLFA的会因网络开销规划不合理造成计算失败的问题,出现了基于Segment Routing(SR技术)的TI-LFA FRR技术。

优点:

  • TI-LFA FRR可以在网络拓扑中不存在PQ节点的情况下,实现任意拓扑的保护。
  • TI-LFA FRR完全继承了RLFA FRR计算扩展P空间和Q空间的算法,上文的公式三到公式六完全适用于TI-LFA FRR场景。

缺点:

  • 目前只能应于SR技术上。

转至 SR段路由技术之后再进行进一步补充原理及其它内容。

三、配置命令介绍

开启FRR功能,并使用LFA算法(ENSP中只支持该算法)。

[Huawei]ospf 1 
[Huawei-ospf-1]frr
[Huawei-ospf-1-frr]loop-free-alternate 

实验拓扑

​ 按照图中规划进行设置网络及链路开销,要求实现主用链路断开之后,网络能快速感知并切换至备用链路转发数据。

在这里插入图片描述

基础配置

  • 省略底层IP及OSPF相关配置。

  • 未配置FRR时,于P1上查看去往模拟业务的OSPF路由信息:

默认下一跳为10.1.14.4(P4)此外无其它信息。

[P1-ospf-1]dis ip routing-table protocol ospf verboseDestination: 192.168.2.0/24Protocol: OSPF             Process ID: 1Preference: 10                     Cost: 6NextHop: 10.1.14.4         Neighbour: 0.0.0.0State: Active Adv              Age: 00h00m03sTag: 0                  Priority: lowLabel: NULL                QoSInfo: 0x0IndirectID: 0x0              RelayNextHop: 0.0.0.0           Interface: GigabitEthernet0/0/0TunnelID: 0x0                   Flags:  D

启用FRR

  • 将所有设备的FRR功能启用,并指定LFA算法。

  • 配置完成之后,于P1上查看去往模拟业务的OSPF路由信息:

开启FRR之后,出现BKNextHop等信息,表示该路由的备份链路信息。

[P1-ospf-1]dis ip routing-table protocol ospf verboseDestination: 192.168.2.0/24Protocol: OSPF             Process ID: 1Preference: 10                     Cost: 6NextHop: 10.1.14.4         Neighbour: 0.0.0.0State: Active Adv              Age: 00h00m12sTag: 0                  Priority: lowLabel: NULL                QoSInfo: 0x0IndirectID: 0x0              RelayNextHop: 0.0.0.0           Interface: GigabitEthernet0/0/0TunnelID: 0x0                   Flags:  D
----------《新增信息》----------BkNextHop: 10.1.12.2       BkInterface: GigabitEthernet0/0/1BkLabel: NULL            SecTunnelID: 0x0              BkPETunnelID: 0x0         BkPESecTunnelID: 0x0              BkIndirectID: 0x0   

启用BFD

  • 为了实现链路故障之后能够快速感知,需要启用BFD技术。
  • 将所有设备的BFD功能启用,使用默认间隔即可。
[PE1]bfd
[PE1-bfd]ospf 1
[PE1-ospf-1]bfd all-interfaces enable
  • P1上查看BFD会话是否建立成功:
[P1-ospf-1]dis bfd session all 
--------------------------------------------------------------------------------
Local Remote     PeerIpAddr      State     Type        InterfaceName            
--------------------------------------------------------------------------------8192  8193       10.1.14.4       Up        D_IP_IF     GigabitEthernet0/0/0     
8193  8192       10.1.15.5       Up        D_IP_IF     GigabitEthernet0/0/2     
8194  0          10.1.12.2       Down      D_IP_IF     GigabitEthernet0/0/1     
--------------------------------------------------------------------------------Total UP/DOWN Session Number : 2/1

模拟故障

  • PE1设备上进行长ping模拟业务,然后于P4上将G0/0/0接口关闭,观察通断情况。

  • 目前直连链路断开,P1直接感知可能并不需要通过BFD检测就能感知通断,故只丢了1个包。
    在这里插入图片描述

  • 于P1-P4之间添加一台设备S,此时如果将S的E0/0/2口断开,P1无法通过直连快速感知,就需要借助BFD检测进行实现快速感知。

  • 链路断开之后,BFD经过约3秒时间断开会话,触发OSPF邻居断开,快速切换到FRR计算的备份路径转发路由。

  • 但从Ping测试中并没有看出明显的差距,还是只丢包1个,不过可以说明BFD检测的作用。
    在这里插入图片描述
    在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/311055.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

海康visionmaster-Group 循环:获取 Group 循环数 据结果的方法

如何获取 Group 循环的所有数据结果&#xff1f; 解答 在 Group 中使用数据集合模块&#xff0c;然后在 Group 的输出设置订阅数据集合模块相关结果&#xff0c;最后在二次开发中获取 Group 的数据结果。如下图所示&#xff0c;参数 out1 为 Group 订阅的数据集合&#xff0c;在…

Vue2中使用echarts,并从后端获取数据同步

一、安装echarts npm install echarts -S 二、导入echarts 在script中导入&#xff0c;比如&#xff1a; import * as echarts from "echarts"; 三、查找要用的示例 比如柱状图 四、初始化并挂载 <template><div id"total-orders-chart" s…

07-C++ 异常

异常 1. 概念 异常事件&#xff08;如&#xff1a;除 0 溢出&#xff0c;数组下标越界&#xff0c;所要读取的文件不存在,空指针&#xff0c;内存不足等等&#xff09; 在C 语言对错误的处理是两种方法&#xff1a; 一是使用整型的 返回值标识错误&#xff1a;二是使用 errno…

分享一个学习Typescript最全的Github网站

一个专注研究Typescript的网站&#xff0c;&#x1f396;&#x1f396;&#x1f396;在这里你可以全面深入学习Typescript相关知识,通过动画方式讲解TS&#xff0c;还有很多常见问题解答。你还可以挑战相应的题目&#xff0c;快来学习吧 我就懒一点&#xff0c;直接原滋原味的…

Django学习3——靓号管理

目录 靓号管理 表结构和数据 根据表结构的需求&#xff0c;在models.py中创建类&#xff08;由类生成数据库中的表&#xff09; 在数据库生成表 自己在数据模拟创建一些数据&#xff1a; 靓号列表 新建靓号 编辑靓号 删除靓号 搜索靓号 靓号管理 表结构和数据 根…

Dirichlet Process (徐亦达老师)狄利克雷过程

混合高斯模型的例子 混合高斯模型 混合高斯模型&#xff08;Mixture of Gaussians&#xff0c;简称GMM&#xff09;是一种概率模型&#xff0c;用于对复杂的数据分布进行建模。它是由多个高斯分布组合而成的混合模型&#xff0c;每个高斯分布&#xff08;称为组件&#xff09;…

安全加固指南:如何更改 SSH 服务器的默认端口号

在 Linux 系统中修改 SSH 服务的默认端口号是一项重要的安全措施&#xff0c;它可以帮助增强系统的安全性。这个过程相对简单&#xff0c;但必须由具有管理员权限的用户来执行。下面&#xff0c;我将向大家介绍如何安全地更改 SSH 端口的具体步骤。 1 备份 SSH 配置文件 在修改…

nodejs+vue网上书城图书销售商城系统io69w

功能介绍 该系统将采用B/S结构模式&#xff0c;使用Vue和ElementUI框架搭建前端页面&#xff0c;后端使用Nodejs来搭建服务器&#xff0c;并使用MySQL&#xff0c;通过axios完成前后端的交互 系统的主要功能包括首页、个人中心、用户管理、图书类型管理、图书分类管理、图书信…

IntelliJ IDEA [警告] pom的依赖中出现警告Provides transitive vulnerable dependency

文章目录 1. 现象2. 为什么出现警告3. 如何对待呢4. 解决5. 解决的好处总结 1. 现象 在我们的工程 pom.xml 中的依赖中&#xff0c;所依赖的 spring-boot-starter-web 出现了警告。 依赖内容 <dependency><groupId>org.springframework.boot</groupId><…

MySQL高级SQL语句补充

目录 1.空值&#xff08;NULL&#xff09;和 无值&#xff08; &#xff09;的区别 2.正则表达式 3.存储过程 存储过程的优点 创建存储过程 调用存储过程 查看存储过程 存储过程的参数 IN 输入参数 OUT 输出参数 INOUT 输入输出参数 删除存储过程 存储过程的控制语…

最大花费金额 - 华为OD统一考试

OD统一考试 题解&#xff1a; Java / Python / C 题目描述 双十一众多商品进行打折销售&#xff0c;小明想购买自己心仪的一些物品&#xff0c;但由于受购买资金限制&#xff0c;所以他决定从众多心仪商品中购买三件&#xff0c;而且想尽可能的花完资金现在请你设计一个程序帮…

(2023,提示扩展,图像反演,文本到文本生成)自适应文本到图像生成的提示扩展

Prompt Expansion for Adaptive Text-to-Image Generation 公众&#xff1a;EDPJ&#xff08;添加 VX&#xff1a;CV_EDPJ 或直接进 Q 交流群&#xff1a;922230617 获取资料&#xff09; 目录 0. 摘要 3. 提示扩展数据集 3.1 图像审美数据集 3.2 图像到文本反演 3.3 查…