性能优化(CPU优化技术)-ARM Neon详细介绍

本文主要介绍ARM Neon技术,包括SIMD技术、SIMT、ARM Neon的指令、寄存器、意图为读者提供对ARM Neon的一个整体理解。

🎬个人简介:一个全栈工程师的升级之路!
📋个人专栏:高性能(HPC)开发基础教程
🎀CSDN主页 发狂的小花
🌄人生秘诀:学习的本质就是极致重复!

目录

1 并行技术的几种方式

1.2 SISD

1.3 MIMD

1.4 SIMD

1.4.1 概念和特点

1.4.2 产生的原因

1.5 MISD

1.6 SIMT

2 NEON介绍

2.1 ARM Neon 特点

2.2 ARM Neon 数据类型

2.2.1 Neon 数据类型的命名格式

2.2.2 支持的数据类型      

2.3 ARM Neon 指令

2.4 Neon 寄存器

2.4.1 Neon一般的执行流程

2.4.2 Neon 寄存器

2.5 Neon数据处理指令分类

3 一般使用ARM Neon优化的几种方式


1 并行技术的几种方式

        并行计算根据费林分类法,将指令流和数据流的几种不同的方式分成四种计算机类型:SISD、MISD、MIMD、SIMD。NVIDIA CUDA设计出SIMT技术区别于这四种。

1.2 SISD

        SISD是单指令流单数据流(Single Instruction Single Data)的缩写,是一种计算机体系结构。在SISD中,所有的指令和数据都按照一定的顺序串行执行,即每条指令只处理一个操作数,且每个操作数只在一条指令中使用。

        SISD的特点是简单、直观,但效率较低。因为所有指令和数据都必须按顺序执行,所以无法充分利用现代处理器的并行计算能力。不过,由于其实现相对简单,所以在一些简单的应用场景下仍然有一定的应用价值。

1.3 MIMD

        MIMD是多指令流多数据流(Multiple Instruction Multiple Data)的缩写,是一种计算机体系结构。在MIMD中,可以同时有多条指令在不同的处理单元中并行执行,并且每个处理单元都可以同时处理多个数据。

        与SISD和MISD相比,MIMD能够更好地利用现代处理器的并行计算能力,提高程序的执行效率。由于每个处理单元都可以独立地执行指令和处理数据,所以MIMD也被称为“真正并行”的计算机体系结构。

MIMD需要更复杂的控制逻辑来协调不同处理单元之间的操作,增加了实现难度。但是,随着多核处理器的普及和硬件技术的发展,MIMD已经成为现代高性能计算机的主要架构之一。

1.4 SIMD

1.4.1 概念和特点

        SIMD是单指令流多数据流(Single Instruction Multiple Data)的缩写,是一种计算机体系结构。在SIMD中,所有的指令都按照一定的顺序串行执行,但是每个指令可以同时处理多个数据。

        与SISD和MISD相比,SIMD能够更好地利用现代处理器的并行计算能力,提高程序的执行效率。由于每个指令可以同时处理多个数据,所以SIMD也被称为“向量化”的计算机体系结构。

        SIMD需要更复杂的控制逻辑来协调不同数据之间的操作,增加了实现难度。但是,随着硬件技术的发展,SIMD已经成为现代高性能计算机、图形处理器和数字信号处理器等领域的主要架构之一。

1.4.2 产生的原因

        许多程序需要处理大量的数据集,而且很多都是由少于32bits的位数来存储的。比如在视频、图形、图像处理中的8-bit像素数据;音频编码中的16-bit采样数据等。在诸如上述的情形中,很可能充斥着大量简单而重复的运算,且少有控制代码的出现。因此,SIMD就擅长为这类程序提供更高的性能。比如大量的数据集、2D、3D图像、视频、音频、色彩转换、流体力学、气象学、天体物理等。              

1.5 MISD

        MISD是多指令流单数据流(Multiple Instruction Single Data)的缩写,是一种计算机体系结构。在MISD中,指令和数据都按照一定的顺序串行执行,但是可以同时有多条指令在不同的处理单元中并行执行。

        与SISD相比,MISD能够更好地利用现代处理器的并行计算能力,提高程序的执行效率。但是,由于指令和数据仍然必须按顺序执行,所以仍然存在一些限制。此外,MISD需要更复杂的控制逻辑来协调不同处理单元之间的操作,增加了实现难度

1.6 SIMT

        SIMT是单指令流多线程(Single Instruction, Multiple Threads)的缩写,是一种并行计算模型。在SIMT中,所有的线程都执行相同的指令,但是每个线程可以处理不同的数据。

        与SIMD相比,SIMT能够更好地利用现代处理器的并行计算能力,提高程序的执行效率。由于每个线程可以独立地处理不同的数据,所以SIMT也被称为“线程化”的计算机体系结构。

        SIMT需要更复杂的控制逻辑来协调不同线程之间的操作,增加了实现难度。但是,随着多核处理器和硬件技术的发展,SIMT已经成为现代高性能计算机、图形处理器和游戏机等领域的主要架构之一。

        类似 CPU 上的多线程,所有的核心各有各的执行单元,数据不同,执行的命令是相同的。多个线程各有各的处理单元,和 SIMD 共用一个 ALU 不同。

SIMT

        

2 NEON介绍

         ARM NEON是ARM推出的一种CPU扩展技术SIMD,一般在Cortex-A应用处理器上和少量的Cortex-R处理器上支持Neon技术,使用SIMD方式可以在一定程度上提升CPU的运算效率。

        由于现代处理器的寄存器、ALU都是为了32位或者64为设计的,但是这些大量的数据基本都是8位和16位的,因此如果每次执行一个数据就会很浪费寄存器的宽度,由此引入了Neon 的SIMD技术,通过一条指令控制同时处理多个数据来提高效率,这样就提高了寄存器和ALU的使用效率。

2.1 ARM Neon 特点

        (1)一般每个ARM核都有一个NEON单元,CPU与NEON共用一个ALU,相对于SIMT是每个核都有一个ALU。

        (2)NEON技术最早出现在ARMv7上,ARMv7有16个128位寄存器(Q),32个64位寄存器(D)。ARMv8有32个128位寄存器(Q),64个64位寄存器(D),Q寄存器物理上不存在,但是逻辑上存在,其核心是D寄存器组成的。因此优化时注意,Q寄存器和D寄存器的不能重复使用。

        (3)ARM NEON技术是一种SIMD,即单指令多数据技术,是区别于SISD和SIMT的不同的技术,对于提高CPU运行效率,有很大的作用。

       (4) NEON技术可以用于多线程,并且共享常规CPU的内存和cache,Cache一般有三级Cache L1、L2、L3。

2.2 ARM Neon 数据类型

2.2.1 Neon 数据类型的命名格式

        (1) <type><size>x<number_of_lanes>_t

        (2)<type><size>x<number_of_lanes>x<length_of_array>_t

             例如 float32x4x2_t u1 表示定义两个128位向量寄存器数据 ,用两个128位寄存器存储,

              每个寄存器存储4个float类型数据。

               内部的构造是

                        struct float32x4x2_t

                        {

                                float32x4_t val[2];

                        }float32x4x2_t;

               取每个寄存器数据的格式:

                        u1.val[0]; u1.val[1];

2.2.2 支持的数据类型      

       对64位D寄存器或者是128位Q寄存器拆分,比如int8x16_t指的是int8类型的16个数据存储在一个128位Q寄存器中,Q寄存器是虚拟的,真实并不存在;int8x8_t指的是int8类型的8个数据存储在一个64位D寄存器中。

        主要支持的数据类型如下:

        注:F16不适用于数据处理运算,只用于数据转换,仅用于实现半精度体系结构扩展的系统。

多项式算术在实现某些加密、数据完整性算法中非常有用。

      一个向量寄存器存储数据的格式如下图,通过一次处理多个数据,可以提高效率大概10倍左右,由于寄存器之间有专门的通道,处理的速度极快,因此使用SIMD的编程方式可以使得程序的性能变得优秀。

2.3 ARM Neon 指令

ARM Neon 指令集可以分为以下几类:

        1. 加载和存储指令:用于从内存中加载数据或将数据存储到内存中。包括单精度浮点数的加载和存储指令,以及双精度浮点数的加载和存储指令。

        2. 算术运算指令:用于执行各种算术运算,包括加法、减法、乘法、除法等。这些指令可以对单精度浮点数和整数进行操作,也可以对双精度浮点数进行操作。

        3. 逻辑运算指令:用于执行各种逻辑运算,包括与、或、非等。这些指令可以对单精度浮点数和整数进行操作,也可以对双精度浮点数进行操作。

        4. 比较指令:用于比较两个值的大小关系,包括相等、不等、大于、小于等。这些指令可以对单精度浮点数和整数进行操作,也可以对双精度浮点数进行操作。

        5. 移位指令:用于将一个值向左或向右移动指定的位数。这些指令可以对单精度浮点数和整数进行操作,也可以对双精度浮点数进行操作。

        6. 向量数据处理指令:用于对多个数据进行并行处理,包括向量加法、向量减法、向量乘法等。这些指令可以对单精度浮点数和整数进行操作,也可以对双精度浮点数进行操作。

2.4 Neon 寄存器

2.4.1 Neon一般的执行流程

        第一步:从内存load数据到vector寄存器

        第二步:使用Intrinsic指令或者汇编在ALU执行相应的运算

        第三步:将执行后的结果save到内存

2.4.2 Neon 寄存器

 ARMv7上寄存器关系:

        

        

    ARMv7上寄存器的组合:(一个Q寄存器对应2个D寄存器)

  • 16×128-bit寄存器(Q0-Q15);
  • 或32×64-bit寄存器(D0-D31)
  • 或上述寄存器的组合。

    映射关系:

  • D<2n> 映射到 Q 的最低有效半部;
  • D<2n+1> 映射到 Q 的最高有效半部;

    Neon寄存器存储数据的几种形式:

2.5 Neon数据处理指令分类

        一般分为普通指令、长指令、宽指令、窄指令、饱和指令等。

        普通指令(Normal instructions 

        可以对任意类型的向量进行操作,并生成与操作数向量相同大小和通常相同类型的结果向量。
        长指令(Long instructions

        对双字向量操作数进行操作,并生成四倍长字向量结果。结果元素的宽度通常是操作数的两倍,并且类型相同。长指令使用在指令中添加字母L来指定。
        宽指令(Wide instructions)

        对一个双字向量操作数和一个四倍长字向量操作数进行操作,生成四倍长字向量结果。结果元素和第一个操作数都是第二个操作数的元素宽度的两倍。宽指令在指令中添加字母W来指定。
        窄指令(Narrow instructions)

        对四倍长字向量操作数进行操作,并生成双字向量结果。结果元素的宽度通常是操作数元素宽度的一半。窄指令使用在指令中添加字母N来指定。
        饱和变体(Saturating variants)
        在ARM中,饱和算法如下:
                对于有符号饱和运算,如果结果小于 -2^n,则返回的结果将为 -2^n;
                对于无符号饱和运算,如果整个结果将是负值,那么返回的结果是 0;如果结果大于 2^n - 1,则返回的结果将为 2^n - 1;
                在NEON中,饱和算法通过在V和指令助记符之间使用Q前缀来指定饱和指令,原理与上述内容相同。

        来自官方文档的一些参考说明图:

3 一般使用ARM Neon优化的几种方式

        a.通过使用编译选项增加-O3 和针对Neon的优化编译选项,对于一些简单的运算,让编译器

           自动优化,效果会出奇的好

        c.通过使用一些已经优化好的ARM Neon库来加速程序

        d.使用Intrinsic Instruction 来编写SIMD相关的代码优化,编写该类程序时需要注意不同的指

           令速度有所不同,选择合适的指令也是优化的一个难点,同时要对数据进行一个预取,利用

           cache的高性能来提高效率,也要注意不要做超过寄存器长度的处理。

        e.使用ARM Neon汇编来提高运行效率

🌈我的分享也就到此结束啦🌈
如果我的分享也能对你有帮助,那就太好了!
若有不足,还请大家多多指正,我们一起学习交流!
📢未来的富豪们:点赞👍→收藏⭐→关注🔍,如果能评论下就太惊喜了!
感谢大家的观看和支持!最后,☺祝愿大家每天有钱赚!!!

下一节将介绍如何在一个Android手机进行ARM Neon的优化测试,并且包括Intrinsic指令的使用。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/314017.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

自定义html5中日期选取器的样式

自定义html5中日期选取器的样式 1. 前言1.1 关于 h5 的新特性1.2 使用浏览器 2. html5中日期选取器默认样式3. 自定义日期样式3.1 简单定义3.2 花式样式定义 4. 改变日期格式5. 参考6. 关于低版本浏览器隐藏小三角 1. 前言 1.1 关于 h5 的新特性 可看下面的文章 HTML5 新特性之…

【AIGC-图片生成视频系列-5】I2V-Adapter:一种用于视频扩散模型的通用图像生成视频适配器

目录 一. 项目与贡献概述 二. 方法详解 a. 整体框架图 b. 帧相似性先验 三. 一般化图像生成动画结果 四. 基于个性化 T2I 模型的动画结果 五. 结合ControlNet动画结果 六. 项目论文和代码 七. 个人思考与总结 在快速发展的数字内容生成领域&#xff0c;焦点已从文本到…

Linux系统安装DockerDocker-Compose

1、Docker安装 下载Docker依赖的组件 yum -y install yum-utils device-mapper-persistent-data lvm2 设置下载Docker服务的镜像源&#xff0c;设置为阿里云 yum-config-manager --add-repo http://mirrors.aliyun.com/docker-ce/linux/centos/docker-ce.repo 安装Docker服务 …

【揭秘】如何使用LinkedHashMap来实现一个LUR缓存?

LRU&#xff08;Least Recently Used&#xff09;缓存是一种常用的缓存淘汰策略&#xff0c;用于在有限的缓存空间中存储数据。其基本思想是&#xff1a;如果数据最近被访问过&#xff0c;那么在未来它被访问的概率也更高。因此&#xff0c;LRU缓存会保留最近访问过的数据&…

NGUI基础-三大基础组件之Panel组件

目录 Panel组件 Panel的作用&#xff1a; 注意&#xff1a; 相关关键参数讲解&#xff1a; Alpha&#xff08;透明度值&#xff09;&#xff1a; Depth&#xff08;深度&#xff09;&#xff1a; Clippinng&#xff08;裁剪&#xff09;&#xff1a; ​编辑 None Tex…

Dockerfile - 工作流程、构建镜像、文件语法

目录 一、Dockerfile 1.1、简介 1.2、Dockerfile 构建镜像的流程 1.3、Dockerfile 文件语法 1.3.1、注意事项 1.3.2、FROM 1.3.3、MAINTAINER&#xff08;官方已废弃&#xff09; 1.3.4、RUN 1.3.5、EXPOSE 1.3.6、WORKDIR 1.3.7、ADD 和 COPY 1.3.8、ENV 1.3.9、…

前端 js 基础对象 (3)

js 对象定义 <!DOCTYPE html> <html> <body><h1>JavaScript 对象创建</h1><p id"demo1"></p> <p>new</p> <p id"demo"></p><script> // 创建对象&#xff1a; var persona {fi…

2024孙多勇®跨年演讲,重塑医美增长力,开启璀璨华章!

不谋万事者&#xff0c;不足谋一时&#xff1b;不谋全局者&#xff0c;不足谋一域。明者因时而变&#xff0c;智者随时而制。 12月31日-1月3日由汇成医美集团主办的&#xff0c;以“重塑医美增长力”为主题的第七届孙多勇跨年演讲暨「英雄2024」年度战略规划案&#xff0c;在中…

SELinux 安全模型——MLS

首发公号&#xff1a;Rand_cs BLP 模型&#xff1a;于1973年被提出&#xff0c;是一种模拟军事安全策略的计算机访问控制模型&#xff0c;它是最早也是最常用的一种多级访问控制模型&#xff0c;主要用于保证系统信息的机密性&#xff0c;是第一个严格形式化的安全模型 暂时无…

AI模型私人订制

使用AI可以把你的脸换成明星的脸&#xff0c;可以用于直播、录播。 AI换脸1 也可以把视频中明星的脸换成你的脸 AI换脸2 之所以能够替换成功&#xff0c;是因为我们有一个AI人物模型&#xff0c;AI驱动这个模型就可以在录制视频的时候替换指定人物的脸。AI模型从哪里来&…

SELinux 基本原理

本文讲述 SELinux 保护安全的基本原理 首发公号&#xff1a;Rand_cs 安全检查顺序 不废话&#xff0c;直接先来看张图 当我们执行系统调用的时候&#xff0c;会首先对某些错误情况进行检查&#xff0c;如果失败通常会得到一些 error 信息&#xff0c;通过查看全局变量 errno …

2.2 设计FMEA步骤二:结构分析

2.2.1 目的 设计结构分析的目的是将设计识别和分解为系统、子系统、组件和零件,以便进行技术风险分析。其主要目标包括: 可视化分析范围结构化表示:方块图、边界图、数字模型、实体零件识别设计接口、交互作用和间隙促进顾客和供应商工程团队之间的协作(接口责任)为功能分…