数据结构学习笔记——查找算法中的树形查找(B树、B+树)

目录

  • 前言
  • 一、B树
    • (一)B树的概念
    • (二)B树的性质
    • (三)B树的高度
    • (四)B树的查找
    • (五)B树的插入
    • (六)B树的删除
  • 二、B+树
    • (一)B+树的概念
    • (二)B+树的性质
    • (三)B+树的查找

前言

B树和B+树属于树形查找算法中的一种,主要用于数据库系统、文件系统和磁盘存取等方面,都是用于存储和索引大量的数据,以提高检索效率。例如,在磁盘存储中,通过将数据分散到多个磁盘块中,并使用树形结构来组织这些磁盘块,从而提高了查找速度和查找效率。若设B树中所有结点的孩子结点个数的最大值为m,则该B树是一棵m阶B树,另外B+树则是B树的变形。

一、B树

(一)B树的概念

二叉排序树也称为查找树(注意:与二分查找的判定树不同),其中各结点值的大小关系是:左子树<根结点<右子树,且左、右子树也是一棵二叉排序树满足其条件。

前面给过二叉查找树的定义,简单的来说,B树是二叉查找树的推广,即一棵m阶B树可看作一棵m叉查找树,但两者有些方面不同,如下:
1、结点与关键字不同:二叉查找树遵循二叉树的原则,每个结点最多只有两个孩子结点,且每个结点只包含一个关键字;而B树的每个结点最多有m个结点,即最多含有m-1个关键字。
2、平衡性:二叉查找树不一定是一棵平衡二叉树,查找过程中查找效率可能随着查找树的结构变化;而B树是一棵多路平衡查找树,通过限制结点的子树和关键字数量,使B树的高度保持相对稳定,从而提高查找效率。B树也正是在保持平衡的前提下能够更高效地处理大量数据,从而非常适合应用在需要高效存储和访问大量数据的场景中。

(二)B树的性质

B树中与二叉查找树相同的性质,二叉查找树各结点值的大小关系是:左子树<根结点<右子树,而B树中关键字的值的大小关系是:子树1<关键字1<子树2<关键字2<子树3…,一棵m阶B树中,除了根结点外所有结点中关键字个数为:⌈m/2⌉-1 ≤ n ≤ m-1。例如,一棵5阶B树中,除了根结点外所有结点中关键字的个数为2 ≤ n ≤ 4,即关键字个数最少为2,最多为4。
在这里插入图片描述
1、m阶B树中,根结点至多有m棵子树,若B树的根结点不是终端结点,则该B树至少有两棵子树。
2、B树中结点内关键字均以升序或降序排列。
3、B树是一棵多路平衡查找树,所有结点的平衡因子均为0。
4、m阶B树中,若根结点没有关键字,则B树无子树,B树为空;若有关键字,由于子树个数等于关键字个数加1,所以子树一定大于或等于两棵。
5、m阶B树中,根结点最少含1个关键字,而除根结点外,每个非叶子结点至少有⌈m/2⌉棵子树,且至少有⌈m/2⌉-1个关键字;由于最少情况下,根结点至少有一个关键字,所以B树中所有结点包括的关键字个数至少为(n-1)(⌈m/2⌉-1)+1个。
6、结点的孩子结点的个数等于该结点关键字的个数加1,即具有n个关键字的m阶B树,应有n+1个叶结点。另外,B树中所有的叶子结点均在一层上,且不带任何信息,这一点与二分查找判定树中查找失败的结点类似,实际上这些叶子结点不存在,代表查找失败的情况,如下:
在这里插入图片描述

(三)B树的高度

在求B树的高度时,不计入叶子结点,若设m阶B树中包括n(n≥1)个关键字,其高度为h,可得到B树的最小高度和最大高度范围区间:logm(n+1) ≤ h ≤ log⌈m/2⌉[(n+1)/2]+1。

⌈ ⌉表示向上取整,取比自己大的最小整数,⌊ ⌋表示向下取整,取比自己小的最大整数。

(四)B树的查找

B树的查找类似二叉查找,首先在B树中查找结点,然后在结点所包含的关键字K1,…,Kn中查找给定的关键字,可通过顺序查找二分查找进行查找,若找到等于给定值的关键字,则查找成功;否则,继续查找,直至找到或指针为空时,此时查找失败,即查找到B树的叶子结点时失败。

(五)B树的插入

B树的插入操作不仅需要找到要插入的位置(定位),而且需判断插入后是否会导致不满足B树的定义,由于B树中查找成功结点的关键字个数在 ⌈m/2⌉-1 ≤ n ≤ m-1间,如下:
1、第一种情况:若插入后结点的关键字个数小于m,则直接插入。
在这里插入图片描述
2、第二种情况:若插入后结点的关键字个数大于m-1,则需要进行调整,从关键字中间位置⌈m/2⌉处将关键字分为两部分,左半部分放在原结点中,右半部分放在新的相邻右边结点中,中间关键字元素⌈m/2⌉上移到原结点的父结点中,另外,若父结点的空间也不够,则继续按照以上方式进行调整。
在这里插入图片描述

(六)B树的删除

B树的删除分两种情况,如下:
1、第一种情况
若要删除的关键字在终端结点中时:
(1)若要删除的关键字所在结点的关键字个数大于或等于⌈m/2⌉时,即关键字删除后结点仍满足相应的关键字个数,则可直接删去。
(2)若要删除的关键字当前所在结点的关键字个数等于⌈m/2⌉-1时,且左/右兄弟很充裕时,即其关键字个数大于或等于⌈m/2⌉时,需要进行调整(向兄弟借),用当前结点的前驱/后继、前驱的前驱/后继的后继代替,从而满足B树的定义。
在这里插入图片描述
(3)若要删除的关键字当前所在结点的关键字个数等于⌈m/2⌉-1时,且左/右兄弟不是很充裕时,即其关键字个数只等于⌈m/2⌉-1时,则将关键字删除后需要进行合并,即与当前结点的兄弟结点以及双亲结点中的关键字合并。
在这里插入图片描述
2、第二种情况
若要删除的关键字不在终端结点中时,用该关键字的直接前驱或直接后继代替,转换成第一种情况,再进行删除。
在这里插入图片描述
在这里插入图片描述

二、B+树

(一)B+树的概念

B+树可以由分块查找推广,所以也称为多级分块查找,即m阶B+树,它是B树的变形,与B树相同,B树和B+树都是平衡的多叉树,都用在文件索引结构和数据库索引中,但B+树更加适用。B树的结点包含关键字对应记录的存储地址,且B树中的叶子结点不带信息,而B+树的叶子结点带信息,而其中其他的非叶子结点只是作索引作用。

(二)B+树的性质

B+树中,n个关键字对应n棵子树,即每个关键字对应一棵子树,且子树的个数与结点的关键字个数相等,每个分支结点至少有 ⌈m/2⌉棵子树。
在这里插入图片描述
B树与B+树中结点的关键字个数对比如下表:

名称B树B+树
根结点关键字个数1 ≤ n ≤ m-12 ≤ n ≤ m
非根结点关键字个数⌈m/2⌉-1 ≤ n ≤ m-1⌈m/2⌉ ≤ n ≤ m

(三)B+树的查找

B树支持随机查找,而B+树支持顺序查找和随机查找。

B树不支持顺序查找的原因是查找时可能查找到树中的任何一层,所以其查找速度和稳定性没有B+树高。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/321276.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Python常用模块之hashlib

常用模块 - hashlib模块 一、简介 Python的hashlib提供了常见的摘要算法&#xff0c;如MD5、SHA1、SHA224、SHA256、SHA384、SHA512等算法。 什么是摘要算法呢&#xff1f;摘要算法又称哈希算法、散列算法。它通过一个函数&#xff0c;把任意长度的数据转换为一个长度固定的…

JS运行机制、Event Loop

1、JS运行机制 JS最大的特点就是单线程&#xff0c;所以他同一时间只能做一件事情。使单线程不阻塞&#xff0c;就是事件循环。 在JS当中分为两种任务&#xff1a; 同步任务&#xff1a;立即执行的任务&#xff0c;一般放在主线程中&#xff08;主执行栈&#xff09;。异步任…

MySQL数据库索引优化实战

目录 一、前言 二、准备工作 2.1 用户表&#xff08;TB_USER) 2.2 商品表&#xff08;TB_SKU) 2.3 订单表&#xff08;TB_ORDER&#xff09; 三、实例分析 3.1 索引提升查询性能 3.2 多表查询 3.3 索引失效 四、总结 一、前言 在数据库的应用中&#xff0c;性能优化…

C++多态性——(4)纯虚函数与抽象类

归纳编程学习的感悟&#xff0c; 记录奋斗路上的点滴&#xff0c; 希望能帮到一样刻苦的你&#xff01; 如有不足欢迎指正&#xff01; 共同学习交流&#xff01; &#x1f30e;欢迎各位→点赞 &#x1f44d; 收藏⭐ 留言​&#x1f4dd; 我们不能选择命运&#xff0c;但我们可…

C# 反射 入门到详解

1.什么是反射 首先看一张流程图 反射最最要的关注的地方 就在metadata 元数据 元数据&#xff1a;描述DLL/EXE文件中有什么内容 点击生成之后&#xff0c;就会在文件中生成DLL/EXE文件 点击打开文件夹 在bin/Debug 文件下就会生成该文件 exe/dll文件的区别&#xff1a;…

Flappy Bird QDN PyTorch博客 - 代码解读

Flappy Bird QDN PyTorch博客 - 代码解读 介绍环境配置项目目录结构QDN算法重要函数解读preprocess(observation)DeepNetWork(nn.Module)BirdDQN类主程序部分 介绍 在本博客中&#xff0c;我们将介绍如何使用QDN&#xff08;Quantile Dueling Network&#xff09;算法&#xf…

快速批量运行命令

Ansible 是 redhat 提供的自动化运维工具&#xff0c;它是 Python编写&#xff0c;可以通过 pip 安装。 pip install ansible 它通过任务(task)、角色(role)、剧本(playbook) 组织工作项目&#xff0c;适用于批量化系统配置、软件部署等需要复杂操作的工作。 但对于批量运行命…

(Java企业 / 公司项目)Nacos的怎么搭建多环境配置?(含相关面试题)(二)

上一篇讲了一个单体服务中配置&#xff0c;传统的Nacos配置但是在微服务架构当中肯定都是多环境下配置&#xff0c;比如生产环境&#xff0c;dev测试环境等等。 第一种方式模拟开始&#xff1a; 首先展示在生产环境中nacos如何配置&#xff0c;在模块下新建一个配置文件&…

Vue2.Hello World

步骤&#xff1a; 准备容器引包&#xff08;开发版本/生产版本&#xff09;创建实例new Vue()添加配置项 el指定挂载点data提供数据 准备容器 就是新建一个div标签 引包 vue2版本中文文档&#xff1a;https://v2.cn.vuejs.org/v2/guide/ 尝试 Vue.js 最简单的方法是使用 …

福利来袭,.NET Core开发5大案例,30w字PDF文档大放送!!!

千里之行&#xff0c;始于足下&#xff0c;若想提高软件编程能力&#xff0c;最最重要的是实践&#xff0c;所谓纸上得来终觉浅&#xff0c;绝知此事要躬行。根据相关【艾宾浩斯遗忘曲线】研究表明&#xff0c;如果不动手实践&#xff0c;记住的东西会很快忘记。 为了便于大家查…

教程:Centos6迁移旧虚拟机文件后的网络配置教程,完美解决虚拟机移动后的网络ip变化问题

博主在工作后&#xff0c;想整整之前大学的虚拟机集群&#xff0c;因此特意从之前的旧电脑把虚拟机文件给拷贝了过来&#xff0c;在导入到vm-workstation&#xff0c;顺便能启动虚拟机后&#xff0c;发现之前的静态ip已经跟现在的宿主机网络不一样。想着重新配置&#xff0c;但…

深度学习课程实验二深层神经网络搭建及优化

一、 实验目的 1、学会训练和搭建深层神经网络&#xff1b; 2、掌握超参数调试正则化及优化。 二、 实验步骤 初始化 1、导入所需要的库 2、搭建神经网络模型 3、零初始化 4、随机初始化 5、He初始化 6、总结三种不同类型的初始化 正则化 1、导入所需要的库 2、使用非正则化…