手势识别MATLAB代码

手势识别是智能设备常用的需求, 下面我们用MATLAB来识别手部的形态:

主程序main.m


clc;clear all;close all;%清除命令行和窗口
im=imread('DSC05815.JPG');

[skin,bwycbcr,w,h] = hand_segmentation(im);
im1=bwycbcr;
%  se = strel('ball',[1 1 1;1 1 1;1 1 1]);
 im1 = imdilate(im1,[1 1 1;1 1 1;1 1 1]);
 figure;
 imshow(im1);
 title('Dilated');
I_closed = imageclose(im1);


bw2=imadjust(I_closed,[0,1]);
%去除少像素连通区域
bw3=bwareaopen(bw2,round(w*h/10));
figure;
imshow(bw3); 
title('去除少数像素');
se=strel('disk',5);
I_closed2=imclose(bw3,se);


I=I_closed2;
BW1=edge(I,'sobel'); %用SOBEL算子进行边缘检测
BW2=edge(I,'roberts');%用Roberts算子进行边缘检测
BW3=edge(I,'prewitt'); %用prewitt算子进行边缘检测
BW4=edge(I,'log'); %用log算子进行边缘检测
BW5=edge(I,'canny'); %用canny算子进行边缘检测
h=fspecial('gaussian',5);
BW6=edge(I,'canny');
figure;
subplot(2,3,1), imshow(BW1);
title('sobel edge check');
subplot(2,3,2), imshow(BW2);
title('sobel edge check');
subplot(2,3,3), imshow(BW3);
title('prewitt edge check');
subplot(2,3,4), imshow(BW4);
title('log edge check');
subplot(2,3,5), imshow(BW5);
title('canny edge check');
subplot(2,3,6), imshow(BW6);
title('gasussian&canny edge check');%此为用高斯滤波后Canny算子边缘检测结果

r1=im(:,:,1);
b1=im(:,:,2);
g1=im(:,:,3);

%% 判断边缘
[w1,h1,k43]=size(im);
for i=1:w1
    for j=1:h1
        if BW6(i,j)==1%是边缘
            % 用红色标出边缘
            r1(i,j)=255;
            b1(i,j)=0;
            g1(i,j)=0;
        end
    end
end
Iegde=zeros(w1,h1,3);
% 合成彩色图
Iegde(:,:,1)=r1;
Iegde(:,:,2)=b1;
Iegde(:,:,3)=g1;
Iegde=double(Iegde/255);%转换为0-1彩色图
figure;
imshow(Iegde);%绘制识别出来的图


子函数imageclose.m

%执行了先膨后胀腐蚀的闭运算
function I_closed = imageclose(im1)
%I=imread('result.bmp');
se=strel('disk',3);
I_closed=imclose(im1,se);
%subplot(1,2,1);
%imshow(im1);
figure;
imshow(I_closed);
title('闭运算后图像');
%imwrite(I_opened,'result1.bmp');
 

子函数 hand_segmentation.m

function [skin,bwycbcr,w,h] = hand_segmentation(im)
%imgrgb=imread('IMG_2755.jpg');
% im=imread('DSC05818.JPG');
[w h]=size(im(:,:,1));
%Laplacian 八邻域模板滤波
h1=[-1,-1,-1;-1,9,-1;-1,-1,-1];
bw1=imfilter(im,h1);
% bw1=im;
[m,n,c]=size(bw1);
% delete strFile,c;
%将RGB色彩空间转换为Ycbcr色彩空间
imgrgb3=rgb2ycbcr(bw1);
y=imgrgb3(:,:,1);
cb=imgrgb3(:,:,2);
cr=imgrgb3(:,:,3);
%==================================
%在Ycbcr色彩空间中分割肤色区域
cb=double(cb);
cr=double(cr);
y=double(y);
bwycbcr=zeros(m,n);
for i=1:m
    for j=1:n
        if y(i,j)<125
            cb1=108+(125-y(i,j))*10/109;
            cr1=154-(125-y(i,j))*10/109;
            wcb=23+(y(i,j)-16)*23.97/109;
            wcr=20+(y(i,j)-16)*18.76/109;
            cb1=(cb(i,j)-cb1)*46.97/wcb+cb1;
            cr1=(cr(i,j)-cr1)*38.76/wcr+cr1;
        elseif y(i,j)>188
            cb1=108+(y(i,j)-188)*10/47;
            cr1=154+(y(i,j)-188)*22/47;
            wcb=14+(235-y(i,j))*32.97/47;
            wcr=10+(235-y(i,j))*28.76/47;
            cb1=(cb(i,j)-cb1)*46.97/wcb+cb1;
            cr1=(cr(i,j)-cr1)*38.76/wcr+cr1;
        else
            cb1=cb(i,j);
            cr1=cr(i,j);
        end
        x1=[-0.819 0.574]*[cb1-109.38;cr1-152.02];
        y1=[-0.574 -0.819]*[cb1-109.38;cr1-152.02];
        if (x1-1.60).^2/644.6521+(y1-2.41).^2/196.8409<=1
            bwycbcr(i,j)=1;
        else bwycbcr(i,j)=0;
        end
    end 
end
%strWrite=strcat('a',strFile1);
%imwrite(bwycbcr,strWrite,'jpg');

figure;
%subplot(2,2,1);
imshow(im);
%title('原始图像');
figure;
%subplot(2,2,2);
imshow(bw1);
figure;
%title('Laplacian滤波');
%subplot(2,2,3);
imshow(bwycbcr); 
% figure;
%title('Ycbcr皮肤颜色模型');
%subplot(2,2,4);
%把bwycbcr拉伸到[0,1]
bw2=imadjust(bwycbcr,[0,1]);
skin=bw2;
%去除少像素连通区域

skin=bwareaopen(skin,round(w*h/1000));
% imshow(skin); 
% title('去除少数像素');

%imwrite(skin,'result.bmp');


子函数Datafind_V1.m

function [Cpx_C_fft_new5]=Datafind_V1(im4)
%im5=imread('result4.bmp');
[Y X]=size(im4);
flag=1;

%寻找链码的起始点
for k=1:Y
    if flag==0
        break;
    end        
    for kk=1:X
        b=im4(k,kk);
          if b==1
            p_x=kk;
            p_y=k;
            flag=0;
            break;
        end
    end
end
imagesc(im4);
colormap(gray);

flag=1;

cur_x=p_x;
cur_y=p_y;
chainCode=[p_y p_x];
im_bak=im4;
while flag==1
im4(cur_y,cur_x)=0;
imblock=im4(cur_y-1:cur_y+1,cur_x-1:cur_x+1);
if sum(sum(imblock))==0 
    if sum(sum(im4))==0 | abs(cur_x-p_x)+abs(cur_y-p_y)<3
        break;
    else
        im_bak(cur_y,cur_x)=0;
        im4=im_bak;
        cur_y=p_y;
        cur_x=p_x;
        chainCode=[];
    end
else
[n_y n_x]=findNb(imblock);
tmp=[n_y+cur_y n_x+cur_x];
chainCode=[chainCode; tmp];
cur_y=tmp(1);
cur_x=tmp(2);
end

end

%将链码出的边缘点组成复数点,并做归一化的傅里叶变换
Cpx_C=chainCode(:,1)+chainCode(:,2)*i;
N=length(Cpx_C);
Cpx_C_fft=1/N*fft(Cpx_C);
figure;plot(real(Cpx_C),imag(Cpx_C));
title('链码点plot图片');
Cpx_C_fft_new5=abs(Cpx_C_fft(2:11));
%save data5.mat Cpx_C_fft_new5 ;
%Cpx_C_new=ifft(Cpx_C_fft_new1);
%figure;plot(real(Cpx_C_new),imag(Cpx_C_new));
%BW=10;

%Cpx_C_fft_new=zeros(1,N);
%Cpx_C_fft_new(1:BW+1)=Cpx_C_fft(1:BW+1);
%Cpx_C_fft_new(N-(BW-1):N)=Cpx_C_fft(N-(BW-1):N);
%Cpx_C_new=ifft(Cpx_C_fft_new);
%figure;plot(real(Cpx_C_new),imag(Cpx_C_new));


子函数boundary_trace.m

%function g=boundary_trace(f)
%g=boundary_trace(f)跟踪目标的外边界,f为输入的二值图像,g为输出的二值图像
%此处f g都是认为是二维矩阵  【行  列】==【y   x】
%此算法只适用于二值图像
%f=imread('result1.bmp');
%去掉整幅图像四周围的像素点,保证图像目标的连通性
function g=boundary_trace(im2)
[YS,XS]=size(im2);
im2(1,1:XS)=0;
im2(YS,1:XS)=0;
im2(1:YS,1)=0;
im2(1:YS,XS)=0;

f=im2bw(im2);
imshow(im2);
offsetr=[-1,0,1,0];
offsetc=[0,1,0,-1];
next_search_dir_table=[4 1 2 3];%搜索方向查找表
next_dir_table=[2 3 4 1];%搜索顺序查找表
start=-1;
boundary=-2;
%找出起始点
[rv,cv]=find((f(2:end-1,:)>0)&(f(1:end-2,:)==0));
%此处可以简化处理,只用找出一个初始点即可。
rv=rv+1;
startr=rv(1);
startc=cv(1);
f=im2double(f);
f(startr,startc)=start;
cur_p=[startr,startc];
init_dir=-1;
done=0;
next_dir=2;  %初始搜索方向
flag=1;
while~done
dir=next_dir;
found_neighbour=0;
for i=1:length(offsetr)   %四邻域上的寻找下一个边缘点
    offset=[offsetr(dir),offsetc(dir)];
    neighbour=cur_p+offset;
    if(f(neighbour(1),neighbour(2)))~=0  %找到新的边缘点
        if(f(cur_p(1),cur_p(2))==start)&(init_dir==-1)
            init_dir=dir;  %记下离开初始点时的方向
            %当前点为初始点且新的边缘点的离开方向为初始离开方向,表明跟踪过程已饶了一圈
        elseif(f(cur_p(1),cur_p(2))==start)&(init_dir==dir)
            done=1;
            found_neighbour=1;
            break;
        end
        next_dir=next_search_dir_table(dir);   %下一个搜索方向
          found_neighbour=1;
          if f(neighbour(1),neighbour(2))~=start
            f(neighbour(1),neighbour(2))=boundary;
          
          end
          cur_p=neighbour;
     
           break;
      end
    dir=next_dir_table(dir);
end
end
bi=find(f==boundary);
f(:)=0;
f(bi)=1;
f(startr,startc)=1;
g=im2bw(f);
figure,imshow(g);
%title('边缘追踪后图像');
%imwrite(g,'result4.bmp');

%[Y,X]=find(g);
%corr=zeros(2,length(X));
%corr(1,:)=X;
%corr(2,:)=Y;

%frac_dim = boxcount(corr, 10,1);

子函数boundary_thin.m

function i_new1=boundary_thin(im3)
%i=imread('result47.bmp');
%imshow(im3);
%i_new=i>128;
%i_new1=bwmorph(i_new,'thin');2
i_new1=bwmorph(im3,'thin');
figure,imshow(i_new1);
title('细化图像');
%imwrite(i_new1,'result5.bmp');

子函数adjustsize.m
 

function I_new1=adjustsize(im1)
%I=imread('result.bmp');
%找到最左边和最右边灰度值不为1点的横坐标
J=sum(im1);
m=size(im1,2);
for i=1:m
    if J(i)~=0
        p=i;
        break;
    else 
        continue;
    end
end
for j=m:-1:1
    if J(j)~=0
        q=j;
        break;
    else
        continue;
    end
end
%找到最左边和最右边灰度值不为1点的纵坐标
I1=im1';
J1=sum(I1);
n=size(I1,2);
for k=1:n
    if J1(k)~=0
        r=k;
        break;
    else 
        continue;
    end
end
for l=n:-1:1
    if J1(l)~=0
        s=l;
        break;
    else
        continue;
    end
end
%剪切出以坐标点(p,r)和(q,s)组成的矩形区域
I_new=imcrop(im1,[p r q-p s-r]);
%figure,imshow(I_new);
I_new1=imresize(I_new,[150 150]);
figure,imshow(I_new1);
title('调整大小为150*150图像');


   程序结果如下:

完整代码见:https://download.csdn.net/download/corn1949/88774968

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/434566.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Go的基准测试

基准测试&#xff08;Benchmark&#xff09;是一项用于测量和评估软件性能指标的方法&#xff0c;主要用于评估你写的代码的性能。 基准测试的代码文件必须以_test.go结尾基准测试的函数必须以Benchmark开头&#xff0c;必须是可导出的基准测试函数必须接受一个指向Benchmark类…

【Docker】nacos集群搭建Nginx负载均衡

目录 一、mysql安装与基操 1.1 数据准备 1.2 创建mysql与数据表 二、Nacos集群部署 2.1 创建nacos及配置 2.2 创建Nginx容器 一、mysql安装与基操 1.1 数据准备 拉取mysql docker pull mysql:5.7(版本) 定义挂载目录 mkdir -p /mysql/{conf,data,script} 配置my.c…

37、WEB攻防——通用漏洞XSS跨站权限维持捆绑钓鱼浏览器漏洞

文章目录 XSS——后台植入Cookie&表单劫持&#xff08;获取明文密码&#xff09;XSS——Flash钓鱼配合MSF捆绑上线XSS——浏览器网马配合MSF访问上线 要想获取有效的cookie&#xff0c;需要&#xff1a;1、网站本身采用cookie进行验证&#xff1b;2、网站未做http-only等的…

[AG32VF407]国产MCU+FPGA 使用I2C测试陀螺仪MPU6050

视频讲解 [AG32VF407]国产MCUFPGA 使用I2C测试陀螺仪MPU6050 实验过程 查看原理图中定义的I2C的管脚&#xff0c;PB0和PB1 在board.ve中定义的引脚功能 I2C0_SDA PIN_36 I2C0_SCL PIN_35新建工程 测试代码 #include "board.h"#define MIN_IRQ_PRIORITY 1 #define …

一行命令在 wsl-ubuntu 中使用 Docker 启动 Windows

在 wsl-ubuntu 中使用 Docker 启动 Windows 0. 背景1. 验证我的系统是否支持 KVM&#xff1f;2. 使用 Docker 启动 Windows3. 访问 Docker 启动的 Windows4. Docker Hub 地址5. Github 地址 0. 背景 我们可以在 Windows 系统使用安装 wsl-ubuntu&#xff0c;今天玩玩在 wsl-ub…

Ubuntu系统中部署C++环境与Visual Studio Code软件

本文介绍在Linux Ubuntu操作系统下,配置Visual Studio Code软件与C++代码开发环境的方法。 在文章VMware虚拟机部署Linux Ubuntu系统的方法中,我们介绍了Linux Ubuntu操作系统的下载、安装方法;本文则基于前述基础,继续介绍在Linux Ubuntu操作系统中配置Visual Studio Code…

【深度学习:t-SNE 】T 分布随机邻域嵌入

【深度学习&#xff1a;t-SNE 】T 分布随机邻域嵌入 降低数据维度的目标什么是PCA和t-SNE&#xff0c;两者有什么区别或相似之处&#xff1f;主成分分析&#xff08;PCA&#xff09;t-分布式随机邻域嵌入&#xff08;t-SNE&#xff09; 在 MNIST 数据集上实现 PCA 和 t-SNE结论…

企业培训革新:在线教育系统源码的全面解析

如今&#xff0c;在线教育系统的兴起为企业提供了全新的解决方案&#xff0c;使得培训不再受到时间和地域的限制。 一、在线教育系统的关键组成 在线教育系统的源码包含众多关键组成部分&#xff0c;其中包括&#xff1a; 1.1用户管理模块 用户管理模块负责管理学员和教员的…

单片机学习笔记---独立按键控制LED亮灭

直接进入正题&#xff01; 今天开始我们要学习一个新的模块&#xff1a;独立按键&#xff01; 先说独立按键的内部结构&#xff1a; 它相当于一种电子开关&#xff0c;按下时开关接通&#xff0c;松开时开关断开&#xff0c;实现原理是通过轻触按键内部的金属弹片受力弹动来实…

Leetcode—114. 二叉树展开为链表【中等】

2023每日刷题&#xff08;九十八&#xff09; Leetcode—114. 二叉树展开为链表 Morris-like算法思想 可以发现展开的顺序其实就是二叉树的先序遍历。算法和 94 题中序遍历的 Morris 算法有些神似&#xff0c;我们需要两步完成这道题。 将左子树插入到右子树的地方将原来的右…

JVM系列-7内存调优

&#x1f44f;作者简介&#xff1a;大家好&#xff0c;我是爱吃芝士的土豆倪&#xff0c;24届校招生Java选手&#xff0c;很高兴认识大家&#x1f4d5;系列专栏&#xff1a;Spring原理、JUC原理、Kafka原理、分布式技术原理、数据库技术、JVM原理&#x1f525;如果感觉博主的文…

鸿蒙开发初体验

文章目录 前言一、环境配置1.1 安装DevEco Studio1.2 安装相关环境 二、工程创建三、工程结构介绍四、代码实现4.1 初识ArkTs4.2 具体实现 参考资料 前言 HarmonyOS是华为公司推出的一种操作系统&#xff0c;旨在为不同设备提供统一的操作系统和开发平台。鸿蒙开发的出现为用户…