Bert基础(一)--transformer概览

1、简介

当下最先进的深度学习架构之一,Transformer被广泛应用于自然语言处理领域。它不单替代了以前流行的循环神经网络(recurrent neural network, RNN)和长短期记忆(long short-term memory, LSTM)网络,并且以它为基础衍生出了诸如BERT、GPT-3、T5等知名架构。

本文将带领你深入了解Transformer的实现细节及工作原理。本章首先介绍Transformer的基本概念,然后通过一个文本翻译实例进一步讲解Transformer如何将编码器−解码器架构用于语言翻译任务。我们将通过探讨编码器(encoder)的组成部分了解它的工作原理。之后,我们将深入了解解码器(decoder)的组成部分。最后,我们将整合编码器和解码器,进而理解Transformer的整体工作原理。

2、Transformer简介

循环神经网络和长短期记忆网络已经广泛应用于时序任务,比如文本预测、机器翻译、文章生成等。然而,它们面临的一大问题就是如何记录长期依赖。

为了解决这个问题,一个名为Transformer的新架构应运而生。从那以后,Transformer被应用到多个自然语言处理方向,到目前为止还未有新的架构能够将其替代。可以说,它的出现是自然语言处理领域的突破,并为新的革命性架构(BERT、GPT-3、T5等)打下了理论基础。

Transformer完全依赖于注意力机制,并摒弃了循环。它使用的是一种特殊的注意力机制,称为自注意力(self-attention)。我们将在后面介绍具体细节。

让我们通过一个文本翻译实例来了解Transformer是如何工作的。Transformer由编码器和解码器两部分组成。首先,向编码器输入一句话(原句),让其学习这句话的特征[插图],再将特征作为输入传输给解码器。最后,此特征会通过解码器生成输出句(目标句)。

假设我们需要将一个句子从英文翻译为法文。如图所示,首先,我们需要将这个英文句子(原句)输进编码器。编码器将提取英文句子的特征并提供给解码器。最后,解码器通过特征完成法文句子(目标句)的翻译。
在这里插入图片描述
此方法看起来很简单,但是如何实现呢?Transformer中的编码器和解码器是如何将英文(原句)转换为法文(目标句)的呢?编码器和解码器的内部又是怎样工作的呢?接下来,我们将按照数据处理的顺序,依次讲解编码器和解码器.

2.1 理解编码器

Transformer中的编码器不止一个,而是由一组N 个编码器串联而成。一个编码器的输出作为下一个编码器的输入。在图中有N 个编码器,每一个编码器都从下方接收数据,再输出给上方。以此类推,原句中的特征会由最后一个编码器输出。编码器模块的主要功能就是提取原句中的特征。
在这里插入图片描述
需要注意的是,在Transformer原论文“Attention Is All You Need”中,作者使用了N = 6,也就是说,一共有6个编码器叠加在一起。当然,我们可以尝试使用不同的N 值。这里为了方便理解,我们使用N=2,如图所示。
在这里插入图片描述
编码器到底是如何工作的呢?它又是如何提取出原句(输入句)的特征的呢?要进一步理解,我们可以将编码器再次分解。下图展示了编码器的组成部分。
在这里插入图片描述
从上图中可知,每一个编码器的构造都是相同的,并且包含两个部分:

  • 多头注意力层
  • 前馈网络层

现在我们来学习这两部分是如何工作的。要了解多头注意力机制的工作原理,我们首先需要理解什么是自注意力机制。

2.2 自注意力机制

让我们通过一个例子来快速理解自注意力机制。请看下面的例句:
A dog ate the food because it was hungry(一只狗吃了食物,因为它很饿)

例句中的代词it(它)可以指代dog(狗)或者food(食物)。当读这段文字的时候,我们自然而然地认为it指代的是dog,而不是food。但是当计算机模型在面对这两种选择时该如何决定呢?这时,自注意力机制有助于解决这个问题。

还是以上句为例,我们的模型首先需要计算出单词A的特征值,其次计算dog的特征值,然后计算ate的特征值,以此类推。当计算每个词的特征值时,模型都需要遍历每个词与句子中其他词的关系。模型可以通过词与词之间的关系来更好地理解当前词的意思。

比如,当计算it的特征值时,模型会将it与句子中的其他词一一关联,以便更好地理解它的意思。如下图所示,it的特征值由它本身与句子中其他词的关系计算所得。通过关系连线,模型可以明确知道原句中it所指代的是dog而不是food,这是因为it与dog的关系更紧密,关系连线相较于其他词也更粗。
在这里插入图片描述
我们已经初步了解了什么是自注意力机制,下面我们将关注它具体是如何实现的。

为简单起见,我们假设输入句(原句)为I am good(我很好)。首先,我们将每个词转化为其对应的词嵌入向量。需要注意的是,嵌入只是词的特征向量,这个特征向量也是需要通过训练获得的。
单词I的词嵌入向量可以用x1来表示,相应地,am为x2,good为x3,即:

  • 单词I的词嵌入向量 x 1 = [ 1.76 , 2.22 , … … , 6.66 ] x_1 = [1.76, 2.22 ,……, 6.66] x1=[1.76,2.22,……,6.66]
  • 单词am的词嵌入向量 x 2 = [ 7.77 , 0.631 , … … , 5.35 ] x_2 = [7.77, 0.631 ,……, 5.35] x2=[7.77,0.631,……,5.35]
  • 单词good的词嵌入向量 x 3 = [ 11.44 , 10.10 , … … , 3.33 ] x_3 = [11.44, 10.10 ,……, 3.33] x3=[11.44,10.10,……,3.33]

这样一来,原句I am good就可以用一个矩阵[插图](输入矩阵或嵌入矩阵)来表示,如下图所示。
在这里插入图片描述

图1-6中的值为随意设定,只是为了让我们更好地理解其背后的数学原理。

通过输入矩阵X,我们可以看出,矩阵的第一行表示单词I的词嵌入向量。以此类推,第二行对应单词am的词嵌入向量,第三行对应单词good的词嵌入向量。所以矩阵X的维度为[句子的长度×词嵌入向量维度]。原句的长度为3,假设词嵌入向量维度为512,那么输入矩阵的维度就是[3×512]。

现在通过矩阵X,我们再创建三个新的矩阵:查询(query)矩阵Q、键(key)矩阵K,以及值(value)矩阵V。等一下,怎么又多了三个矩阵?为何需要创建它们?接下来,我们将继续了解在自注意力机制中如何使用这三个矩阵。

为了创建查询矩阵、键矩阵和值矩阵,我们需要先创建另外三个权重矩阵,分别为 W Q 、 W K 、 W V W^Q 、W^K、W^V WQWKWV。用矩阵X分别乘以矩阵 W Q 、 W K 、 W V W^Q 、W^K、W^V WQWKWV,就可以依次创建出查询矩阵Q、键矩阵K和值矩阵V。

值得注意的是,权重矩阵 W Q 、 W K 、 W V W^Q 、W^K、W^V WQWKWV的初始值完全是随机的,但最优值则需要通过训练获得。我们取得的权值越优,通过计算所得的查询矩阵、键矩阵和值矩阵也会越精确。

如图所示,将输入矩阵X分别乘以 W Q 、 W K 、 W V W^Q 、W^K、W^V WQWKWV后,我们就可以得出对应的查询矩阵、键矩阵和值矩阵。

在这里插入图片描述
根据上图,我们可以总结出以下三点。

  • 三个矩阵的第一行 q 1 , k 1 , v 1 q_1,k_1,v_1 q1,k1,v1分别代表单词I的查询向量、键向量和值向量。
  • 三个矩阵的第二行 q 2 , k 2 , v 2 q_2,k_2,v_2 q2,k2,v2分别代表单词am的查询向量、键向量和值向量。
  • 三个矩阵的第三行 q 3 , k 3 , v 3 q_3,k_3,v_3 q3,k3,v3分别代表单词good的查询向量、键向量和值向量。

因为每个向量的维度均为64,所以对应的矩阵维度为[句子长度×64]。因为我们的句子长度为3,所以代入后可得维度为[3×64]。至此,我们还是不明白为什么要计算这些值。该如何使用查询矩阵、键矩阵和值矩阵呢?它们怎样才能用于自注意力模型呢?这些问题将在下面进行解答。

2.3 理解自注意力机制

目前,我们学习了如何计算查询矩阵Q、键矩阵K和值矩阵V,并知道它们是基于输入矩阵X计算而来的。现在,让我们学习查询矩阵、键矩阵和值矩阵如何应用于自注意力机制。

要计算一个词的特征值,自注意力机制会使该词与给定句子中的所有词联系起来。还是以I am good这句话为例。为了计算单词I的特征值,我们将单词I与句子中的所有单词一一关联,如图所示。
在这里插入图片描述
了解一个词与句子中所有词的相关程度有助于更精确地计算特征值。现在,让我们学习自注意力机制如何利用查询矩阵、键矩阵和值矩阵将一个词与句子中的所有词联系起来。自注意力机制包括4个步骤,我们来逐一学习。

第1步

自注意力机制首先要计算查询矩阵Q与键矩阵V的点积,两个矩阵如图所示。
在这里插入图片描述
下图显示了查询矩阵Q与键矩阵 K T K^T KT的点积结果
在这里插入图片描述
但为何需要计算查询矩阵与键矩阵的点积呢? Q ⋅ K T Q · K^T QKT到底是什么意思?下面,我们将通过细看 Q ⋅ K T Q · K^T QKT的结果来理解以上问题。

首先,来看[插图]矩阵的第一行,如下图所示。可以看到,这一行计算的是查询向量 q 1 q_1 q1(I)与所有的键向量 k 1 k_1 k1(I)、 k 2 k_2 k2(am)和 k 3 ( g o o d ) k_3(good) k3(good)的点积。通过计算两个向量的点积可以知道它们之间的相似度。

因此,通过计算查询向量( q 1 q_1 q1)和键向量( k 1 , k 2 , k 3 k_1, k_2, k_3 k1,k2,k3)的点积,可以了解单词I与句子中的所有单词的相似度。我们了解到,I这个词与自己的关系比与am和good这两个词的关系更紧密,因为点积值 q 1 ⋅ k 1 q_1·k_1 q1k1大于 q 1 ⋅ k 2 q_1·k_2 q1k2 q 1 ⋅ k 3 q_1·k_3 q1k3
在这里插入图片描述

注意,这里使用的数值是任意选择的,只是为了让我们更好地理解背后的数学原理。

现在来看 Q ⋅ K T Q · K^T QKT矩阵的第二行,如下图所示。现在需要计算查询向量 q 2 q_2 q2(am)与所有的键向量 k 1 k_1 k1(I)、 k 2 k_2 k2(am)和 k 3 ( g o o d ) k_3(good) k3(good)的点积。这样一来,我们就可以知道am与句中所有词的相似度。通过查看 Q ⋅ K T Q · K^T QKT矩阵的第二行可以知道,单词am与自己的关系最为密切,因为点积值最大。

在这里插入图片描述
同理,来看 Q ⋅ K T Q · K^T QKT矩阵的第三行。如下图所示,计算查询向量 q 3 q_3 q3(good)与所有键向量 k 1 k_1 k1(I)、 k 2 k_2 k2(am)和 k 3 ( g o o d ) k_3(good) k3(good)的点积。
从结果可知,good与自己的关系更密切,因为点积值 q 3 ⋅ k 3 q_3·k_3 q3k3大于 q 3 ⋅ k 1 q_3·k_1 q3k1 q 3 ⋅ k 2 q_3·k_2 q3k2

在这里插入图片描述
综上所述,计算查询矩阵Q与键矩阵 K V K^V KV的点积,从而得到相似度分数。这有助于我们了解句子中每个词与所有其他词的相似度。

第2步

自注意力机制的第2步是将 Q ⋅ K T Q · K^T QKT矩阵除以键向量维度的平方根。这样做的目的主要是获得稳定的梯度。

我们用 d k d_k dk来表示键向量维度。然后,将 Q ⋅ K T Q · K^T QKT除以 d k \sqrt{d_k} dk 。在本例中,键向量维度是64。取64的平方根,我们得到8。将第1步中算出的 Q ⋅ K T Q · K^T QKT除以8,如下图所示。

在这里插入图片描述

第3步

目前所得的相似度分数尚未被归一化,我们需要使用softmax函数对其进行归一化处理。如下图所示,应用softmax函数将使数值分布在0到1的范围内,且每一行的所有数之和等于1。

在这里插入图片描述
我们将上图中的矩阵称为分数矩阵。通过这些分数,我们可以了解句子中的每个词与所有词的相关程度。以图中的分数矩阵的第一行为例,它告诉我们,I这个词与它本身的相关程度是90%,与am这个词的相关程度是7%,与good这个词的相关程度是3%。

第4步

至此,我们计算了查询矩阵与键矩阵的点积,得到了分数,然后用softmax函数将分数归一化。自注意力机制的最后一步是计算注意力矩阵Z。注意力矩阵包含句子中每个单词的注意力值。它可以通过将分数矩阵softmax ( Q ⋅ K T / d k Q · K^T/\sqrt{d_k} QKT/dk )乘以值矩阵V得出,如图所示。
在这里插入图片描述
假设计算结果如下图所示。
在这里插入图片描述注意力矩阵Z就是值向量与分数加权之后求和所得到的结果。让我们逐行理解这个计算过程。首先,第一行 z 1 z_1 z1对应I这个词的自注意力值,它通过下图所示的方法计算所得。
在这里插入图片描述
从上图中可以看出,单词I的自注意力值 z 1 z_1 z1是分数加权的值向量之和。所以, z 1 z_1 z1的值将包含90%的值向量 v 1 v_1 v1(I)、7%的值向量 v 2 v_2 v2(am),以及3%的值向量 v 3 v_3 v3(good)。

这有什么用呢?为了回答这个问题,让我们回过头去看之前的例句:A dog ate the food because it was hungry(一只狗吃了食物,因为它很饿)。在这里,it这个词表示dog。我们将按照前面的步骤来计算it这个词的自注意力值。假设计算过程如图所示。
在这里插入图片描述
从图中可以看出,it这个词的自注意力值包含100%的值向量 v 2 v_2 v2(dog)。这有助于模型理解it这个词实际上指的是dog而不是food。这也再次说明,通过自注意力机制,我们可以了解一个词与句子中所有词的相关程度。回到I am good这个例子,单词am的自注意力值 v 2 v_2 v2也是分数加权的值向量之和,如图所示。
在这里插入图片描述
从上图中可以看出, z 2 z_2 z2的值包含2.5%的值向量 v 1 v_1 v1(I)、95%的值向量 v 2 v_2 v2(am),以及2.5%的值向量 v 3 v_3 v3(good)。

同样,单词good的自注意力值 z 3 z_3 z3也是分数加权的值向量之和,如图所示。
在这里插入图片描述
可见, z 3 z_3 z3的值包含21%的值向量 v 1 v_1 v1(I)、3%的值向量 v 2 v_2 v2(am),以及76%的值向量 v 3 v_3 v3(good)。

综上所述,注意力矩阵Z由句子中所有单词的自注意力值组成,它的计算公式如下。

Z = s o f t m a x ( Q ⋅ K T d k ) V Z = softmax(\frac{Q·K^T}{\sqrt{d_k}})V Z=softmax(dk QKT)V

现将自注意力机制的计算步骤总结如下:
(1) 计算查询矩阵与键矩阵的点积 Q ⋅ K T Q·K^T QKT,求得相似值,称为分数;
(2) 将[插图]除以键向量维度的平方根 d k \sqrt{d_k} dk
(3) 用softmax函数对分数进行归一化处理,得到分数矩阵 s o f t m a x ( Q ⋅ K T d k ) softmax(\frac{Q·K^T}{\sqrt{d_k}}) softmax(dk QKT)
(4) 通过将分数矩阵与值矩阵 V V V相乘,计算出注意力矩阵 Z Z Z
自注意力机制的计算流程图如图所示。

在这里插入图片描述
自注意力机制也被称为缩放点积注意力机制,这是因为其计算过程是先求查询矩阵与键矩阵的点积,再用 d k \sqrt{d_k} dk 对结果进行缩放。

我们已经了解了自注意力机制的工作原理。在下节中,我们将了解多头注意力层。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/478631.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

请求数据是写在组件的methods中还是在vuex的action中?

作为一名Web前端开发者,我们经常面临一个重要决策:将请求数据写在组件的methods中还是在Vuex的action中。这个问题涉及到了组件的数据流管理和代码结构的设计,不同的方案对于项目的可维护性和扩展性都有着不同的影响。 首先,让我…

普通人如何开启真正的赚钱之路

您好,我是码农飞哥(wei158556),感谢您阅读本文,欢迎一键三连哦。💪🏻 1. Python基础专栏,基础知识一网打尽,9.9元买不了吃亏,买不了上当。 Python从入门到精通…

【PHP】web服务器支持PHP_环境配置

一、PHP运行目前为止主要有4方式 (1)以模块加载的方式运行,初学者可能不容易理解,其实就是将PHP集成到Apache服务器, 以同一个进程运行。 (2)以CGI的方式运行,CGI英文叫…

Maven(基础)、MyBatis

简介 Apache Maven是一个项目管理和构建工具,它基于项目对象模型 (POM)的概念,通过一小段描述信息来管理项目的构建、报告和文档 官网: http://maven.apache.org/ Maven作用 Maven是专门用于管理和构建Java项目的工具,它的主要功能有&#x…

ChatGPT在数据分析岗位了解阶段的应用

ChatGPT在数据分析岗位了解阶段的应用 ​ 1.1 数据分析师的职责与技能要求 ​ 如果想成为数据分析师,首先要了解这个岗位的具体职责和技能要求。这个问题可以直接询问ChatGPT: ​ ChatGPT收到上述内容后,返回如下结果。 ​ ChatGPT给出的信…

漫漫数学之旅027

文章目录 经典格言数学习题古今评注名人小传 - 约翰弥尔顿 经典格言 机会统治一切。——约翰弥尔顿(John Milton) 约翰弥尔顿,这位伟大的英国诗人曾掷地有声地说出:“机会统治一切。”这句话如果放在一场宇宙级的脱口秀中&#x…

基于Java SSM框架实现疫情防控系统项目【项目源码】计算机毕业设计

基于java的SSM框架实现疫情防控系统演示 Java技术 Java技术它是一个容易让人学会和使用的一门服务器语言。它在编程的过程当中只需要很少的知识就能建立起一个真正的交互站点。对于这个教程来说它并不需要你完全去了解这种语言,只要能快速融入web站点就可以&#x…

基于Java SSM框架实现生鲜食品o2o商城系统项目【项目源码+论文说明】计算机毕业设计

基于java的SSM框架实现生鲜食品o2o商城系统演示 摘要 随着社会的发展,社会的各行各业都在利用信息化时代的优势。计算机的优势和普及使得各种信息系统的开发成为必需。 生鲜食品o2o商城系统,主要的模块包括查看管理员;首页、个人中心、用户…

springboot+flowable 使用方式

创建flowble制定流程图 登录flowalbe 制定流程图 进入建模器应用程序 创建流程图 分配用户 下载流程图 使用springboot 调用flowable /*** 导入流程图老师流程*/Testvoid startTeacherApprover(){Deployment deploy repositoryService.createDeployment().addClasspathRes…

更改WordPress作者存档链接author和Slug插件Edit Author Slug

WordPress默认所有用户的存档永久链接都是/author/username/,不管是管理员还是订阅者或贡献者或作者或编辑。如果你想要自定义用户存档链接,比如根据角色不同使用不一样的author,或者自定义作者链接中的用户名Slug,那么建议考虑使…

数字化转型导师坚鹏:政府数字化转型之数字化新技术解析与应用

政府数字化转型之数字化新技术解析与应用 课程背景: 数字化背景下,很多政府存在以下问题: 不清楚新技术的发展现状? 不清楚新技术的重要应用? 不清楚新技术的成功案例? 课程特色: 有…

数学建模:BP神经网络(含python实现)

原理 BP 神经网络,也称为多层感知机(Multilayer Perceptron,MLP),是一种常见的神经网络模型,用于解决各种机器学习问题,包括分类和回归。BP 代表“反向传播”(Backpropagation&#…