stm32——hal库学习笔记(DAC)

这里写目录标题

  • 一、DAC简介(了解)
    • 1.1,什么是DAC?
    • 1.2,DAC的特性参数
    • 1.3,STM32各系列DAC的主要特性
  • 二、DAC工作原理(掌握)
    • 2.1,DAC框图简介(F1)
    • 2.2,参考电压/模拟部分电压
    • 2.3,DAC数据格式
    • 2.4,触发源
    • 2.5,DMA请求
    • 2.6,DAC输出电压
  • 三、DAC输出实验(熟悉)
    • 3.1,实验简要(了解)
    • 3.2,DAC寄存器介绍(了解)
    • 3.3,DAC输出实验配置步骤(掌握)
    • 3.4,编程实战:DAC输出实验(掌握)
  • 四、DAC输出三角波实验(熟悉)
    • 4.1,实验简要(了解)
    • 4.2,编程实战:DAC输出三角波实验(掌握)
  • 五、DAC输出正弦波实验(熟悉)
    • 5.1,实验简要(了解)
    • 5.2,DAC输出正弦波实验配置步骤(掌握)
    • 5.3,产生正弦波序列函数介绍(熟悉)
    • 5.4,编程实战:DAC输出正弦波实验(掌握)
  • 六、PWM DAC实验(熟悉)
    • 6.1, PWM DAC应用背景(了解)
    • 6.2, PWM DAC技术实现原理(了解)
      • 6.2.1,什么是PWM DAC技术?
      • 6.2.2,用分段函数表示PWM波
      • 6.2.3,将PWM波分段函数进行傅里叶级数展开
      • 6.2.4,PWM DAC的分辨率
      • 6.2.5,8位分辨率下对RC滤波器的设计要求
      • 6.2.6,PWM DAC二阶低通滤波器原理图
    • 6.3,编程实战: PWM DAC实验(掌握)

一、DAC简介(了解)

1.1,什么是DAC?

在这里插入图片描述

1.2,DAC的特性参数

在这里插入图片描述

1.3,STM32各系列DAC的主要特性

在这里插入图片描述

二、DAC工作原理(掌握)

2.1,DAC框图简介(F1)

在这里插入图片描述

2.2,参考电压/模拟部分电压

在这里插入图片描述

2.3,DAC数据格式

在这里插入图片描述

2.4,触发源

在这里插入图片描述
在这里插入图片描述

2.5,DMA请求

在这里插入图片描述

2.6,DAC输出电压

在这里插入图片描述

三、DAC输出实验(熟悉)

3.1,实验简要(了解)

在这里插入图片描述

3.2,DAC寄存器介绍(了解)

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

3.3,DAC输出实验配置步骤(掌握)

在这里插入图片描述
相关HAL库函数介绍
在这里插入图片描述
关键结构体介绍(F1为例)
在这里插入图片描述

3.4,编程实战:DAC输出实验(掌握)

在这里插入图片描述
adc3.c

#include "./BSP/ADC/adc3.h"
#include "./SYSTEM/delay/delay.h"
ADC_HandleTypeDef g_adc3_handle;         /* ADC句柄 */
/*** @brief       ADC3初始化函数*   @note      本函数支持ADC1/ADC2任意通道, 但是不支持ADC3*              我们使用12位精度, ADC采样时钟=12M, 转换时间为: 采样周期 + 12.5个ADC周期*              设置最大采样周期: 239.5, 则转换时间 = 252 个ADC周期 = 21us* @param       无* @retval      无*/
void adc3_init(void)
{GPIO_InitTypeDef gpio_init_struct;RCC_PeriphCLKInitTypeDef adc_clk_init = {0};ADC3_CHY_GPIO_CLK_ENABLE();                                /* IO口时钟使能 */ADC3_CHY_CLK_ENABLE();                                     /* ADC时钟使能 */adc_clk_init.PeriphClockSelection = RCC_PERIPHCLK_ADC;     /* ADC外设时钟 */adc_clk_init.AdcClockSelection = RCC_ADCPCLK2_DIV6;        /* 分频因子6时钟为72M/6=12MHz */HAL_RCCEx_PeriphCLKConfig(&adc_clk_init);                  /* 设置ADC时钟 *//* 设置AD采集通道对应IO引脚工作模式 */gpio_init_struct.Pin = ADC3_CHY_GPIO_PIN;                  /* ADC通道对应的IO引脚 */gpio_init_struct.Mode = GPIO_MODE_ANALOG;                  /* 模拟 */HAL_GPIO_Init(ADC3_CHY_GPIO_PORT, &gpio_init_struct);g_adc3_handle.Instance = ADC_ADCX;                         /* 选择哪个ADC */g_adc3_handle.Init.DataAlign = ADC_DATAALIGN_RIGHT;        /* 数据对齐方式:右对齐 */g_adc3_handle.Init.ScanConvMode = ADC_SCAN_DISABLE;        /* 非扫描模式,仅用到一个通道 */g_adc3_handle.Init.ContinuousConvMode = DISABLE;           /* 关闭连续转换模式 */g_adc3_handle.Init.NbrOfConversion = 1;                    /* 1个转换在规则序列中 也就是只转换规则序列1 */g_adc3_handle.Init.DiscontinuousConvMode = DISABLE;        /* 禁止规则通道组间断模式 */g_adc3_handle.Init.NbrOfDiscConversion = 0;                /* 配置间断模式的规则通道个数,禁止规则通道组间断模式后,此参数忽略 */g_adc3_handle.Init.ExternalTrigConv = ADC_SOFTWARE_START;  /* 触发转换方式:软件触发 */HAL_ADC_Init(&g_adc3_handle);                              /* 初始化 */HAL_ADCEx_Calibration_Start(&g_adc3_handle);               /* 校准ADC */
}/*** @brief       设置ADC通道采样时间* @param       adcx : adc句柄指针,ADC_HandleTypeDef* @param       ch   : 通道号, ADC_CHANNEL_0~ADC_CHANNEL_17* @param       stime: 采样时间  0~7, 对应关系为:*   @arg       ADC_SAMPLETIME_1CYCLE_5, 1.5个ADC时钟周期        ADC_SAMPLETIME_7CYCLES_5, 7.5个ADC时钟周期*   @arg       ADC_SAMPLETIME_13CYCLES_5, 13.5个ADC时钟周期     ADC_SAMPLETIME_28CYCLES_5, 28.5个ADC时钟周期*   @arg       ADC_SAMPLETIME_41CYCLES_5, 41.5个ADC时钟周期     ADC_SAMPLETIME_55CYCLES_5, 55.5个ADC时钟周期*   @arg       ADC_SAMPLETIME_71CYCLES_5, 71.5个ADC时钟周期     ADC_SAMPLETIME_239CYCLES_5, 239.5个ADC时钟周期* @param       rank: 多通道采集时需要设置的采集编号,假设你定义channle1的rank=1,channle2 的rank=2,那么对应你在DMA缓存空间的变量数组AdcDMA[0] 就i是channle1的转换结果,AdcDMA[1]就是通道2的转换结果。 单通道DMA设置为 ADC_REGULAR_RANK_1*   @arg       编号1~16:ADC_REGULAR_RANK_1~ADC_REGULAR_RANK_16* @retval      无*/
void adc3_channel_set(ADC_HandleTypeDef *adc_handle, uint32_t ch, uint32_t rank, uint32_t stime)
{ADC_ChannelConfTypeDef adc_ch_conf;adc_ch_conf.Channel = ch;                            /* 通道 */adc_ch_conf.Rank = rank;                             /* 序列 */adc_ch_conf.SamplingTime = stime;                    /* 采样时间 */HAL_ADC_ConfigChannel(adc_handle, &adc_ch_conf);     /* 通道配置 */
}/*** @brief       获得ADC转换后的结果* @param       ch: 通道值 0~17,取值范围为:ADC_CHANNEL_0~ADC_CHANNEL_17* @retval      无*/
uint32_t adc3_get_result(uint32_t ch)
{adc3_channel_set(&g_adc3_handle , ch, ADC_REGULAR_RANK_1, ADC_SAMPLETIME_239CYCLES_5);    /* 设置通道,序列和采样时间 */HAL_ADC_Start(&g_adc3_handle);                            /* 开启ADC */HAL_ADC_PollForConversion(&g_adc3_handle, 10);            /* 轮询转换 */return (uint16_t)HAL_ADC_GetValue(&g_adc3_handle);        /* 返回最近一次ADC1规则组的转换结果 */
}/*** @brief       获取通道ch的转换值,取times次,然后平均* @param       ch      : 通道号, 0~17* @param       times   : 获取次数* @retval      通道ch的times次转换结果平均值*/
uint32_t adc3_get_result_average(uint32_t ch, uint8_t times)
{uint32_t temp_val = 0;uint8_t t;for (t = 0; t < times; t++)     /* 获取times次数据 */{temp_val += adc3_get_result(ch);delay_ms(5);}return temp_val / times;        /* 返回平均值 */
}

adc3.h

#ifndef __ADC_H
#define __ADC_H
#include "./SYSTEM/sys/sys.h"
/******************************************************************************************/
/* ADC及引脚 定义 */
#define ADC3_CHY_GPIO_PORT                  GPIOA
#define ADC3_CHY_GPIO_PIN                   GPIO_PIN_1 
#define ADC3_CHY_GPIO_CLK_ENABLE()          do{ __HAL_RCC_GPIOA_CLK_ENABLE(); }while(0)  /* PA口时钟使能 */#define ADC_ADCX                            ADC3 
#define ADC3_CHY                            ADC_CHANNEL_1                                /* 通道Y,  0 <= Y <= 17 */ 
#define ADC3_CHY_CLK_ENABLE()               do{ __HAL_RCC_ADC3_CLK_ENABLE(); }while(0)   /* ADC1 时钟使能 *//******************************************************************************************/void adc3_init(void);                                          /* ADC3初始化 */
void adc3_channel_set(ADC_HandleTypeDef *adc_handle, uint32_t ch, uint32_t rank, uint32_t stime);   /* ADC3通道设置 */
uint32_t adc3_get_result(uint32_t ch);                         /* 获得某个通道值  */
uint32_t adc3_get_result_average(uint32_t ch, uint8_t times);  /* 得到某个通道给定次数采样的平均值 */#endif 

dac.c

#include "./BSP/DAC/dac.h"
#include "./SYSTEM/delay/delay.h"
DAC_HandleTypeDef g_dac_handle;         /* DAC句柄 *//*** @brief       DAC初始化函数*   @note      本函数支持DAC1_OUT1/2通道初始化*              DAC的输入时钟来自APB1, 时钟频率=36Mhz=27.8ns*              DAC在输出buffer关闭的时候, 输出建立时间: tSETTLING = 4us (F103数据手册有写)*              因此DAC输出的最高速度约为:250Khz, 以10个点为一个周期, 最大能输出25Khz左右的波形** @param       outx: 要初始化的通道. 1,通道1; 2,通道2* @retval      无*/
void dac_init(uint8_t outx)
{GPIO_InitTypeDef gpio_init_struct;DAC_ChannelConfTypeDef dac_ch_conf;__HAL_RCC_DAC_CLK_ENABLE();                                 /* 使能DAC1的时钟 */__HAL_RCC_GPIOA_CLK_ENABLE();                               /* 使能DAC OUT1/2的IO口时钟(都在PA口,PA4/PA5) */gpio_init_struct.Pin = (outx==1)? GPIO_PIN_4 : GPIO_PIN_5;  /* STM32单片机, 总是PA4=DAC1_OUT1, PA5=DAC1_OUT2 */gpio_init_struct.Mode = GPIO_MODE_ANALOG;HAL_GPIO_Init(GPIOA, &gpio_init_struct);g_dac_handle.Instance = DAC;HAL_DAC_Init(&g_dac_handle);                                /* 初始化DAC */dac_ch_conf.DAC_Trigger = DAC_TRIGGER_NONE;                 /* 不使用触发功能 */dac_ch_conf.DAC_OutputBuffer = DAC_OUTPUTBUFFER_DISABLE;    /* DAC1输出缓冲关闭 */switch(outx){case 1:HAL_DAC_ConfigChannel(&g_dac_handle, &dac_ch_conf, DAC_CHANNEL_1);  /* 配置DAC通道1 */HAL_DAC_Start(&g_dac_handle,DAC_CHANNEL_1);                         /* 开启DAC通道1 */break;case 2:HAL_DAC_ConfigChannel(&g_dac_handle, &dac_ch_conf, DAC_CHANNEL_2);  /* 配置DAC通道2 */HAL_DAC_Start(&g_dac_handle,DAC_CHANNEL_2);                         /* 开启DAC通道2 */break;default:break;}}/*** @brief       设置通道1/2输出电压* @param       outx: 1,通道1; 2,通道2* @param       vol : 0~3300,代表0~3.3V* @retval      无*/
void dac_set_voltage(uint8_t outx, uint16_t vol)
{double temp = vol;temp /= 1000;temp = temp * 4096 / 3.3;if (temp >= 4096)temp = 4095;   /* 如果值大于等于4096, 则取4095 */if (outx == 1)   /* 通道1 */{HAL_DAC_SetValue(&g_dac_handle, DAC_CHANNEL_1, DAC_ALIGN_12B_R, temp); /* 12位右对齐数据格式设置DAC值 */}else            /* 通道2 */{HAL_DAC_SetValue(&g_dac_handle, DAC_CHANNEL_2, DAC_ALIGN_12B_R, temp); /* 12位右对齐数据格式设置DAC值 */}
}

dac.h

#ifndef __DAC_H
#define __DAC_H
#include "./SYSTEM/sys/sys.h"void dac_init(uint8_t outx);                        /* DAC通道1初始化 */ 
void dac_set_voltage(uint8_t outx, uint16_t vol);   /* 设置通道1/2输出电压 */ #endif

main.c

#include "./SYSTEM/sys/sys.h"
#include "./SYSTEM/usart/usart.h"
#include "./SYSTEM/delay/delay.h"
#include "./USMART/usmart.h"
#include "./BSP/LED/led.h"
#include "./BSP/LCD/lcd.h"
#include "./BSP/KEY/key.h"
#include "./BSP/DAC/dac.h"
#include "./BSP/ADC/adc3.h"extern DAC_HandleTypeDef g_dac_handle;int main(void)
{uint16_t adcx;float temp;uint8_t t = 0;uint16_t dacval = 0;uint8_t key;HAL_Init();                                 /* 初始化HAL库 */sys_stm32_clock_init(RCC_PLL_MUL9);         /* 设置时钟, 72Mhz */delay_init(72);                             /* 延时初始化 */usart_init(115200);                         /* 串口初始化为115200 */usmart_dev.init(72);                        /* 初始化USMART */led_init();                                 /* 初始化LED */lcd_init();                                 /* 初始化LCD */key_init();                                 /* 初始化按键 */adc3_init();                                /* 初始化ADC3 */dac_init(1);                                /* 初始化DAC1_OUT1通道 */lcd_show_string(30,  50, 200, 16, 16, "STM32F103", RED);lcd_show_string(30,  70, 200, 16, 16, "DAC TEST", RED);lcd_show_string(30,  90, 200, 16, 16, "ATOM@ALIENTEK", RED);lcd_show_string(30, 110, 200, 16, 16, "WK_UP:+  KEY1:-", RED);lcd_show_string(30, 130, 200, 16, 16, "DAC VAL:", BLUE);lcd_show_string(30, 150, 200, 16, 16, "DAC VOL:0.000V", BLUE);lcd_show_string(30, 170, 200, 16, 16, "ADC VOL:0.000V", BLUE);while (1){t++;key = key_scan(0);          /* 按键扫描 */if (key == WKUP_PRES){if (dacval < 4000)dacval += 200;HAL_DAC_SetValue(&g_dac_handle, DAC_CHANNEL_1, DAC_ALIGN_12B_R, dacval);/* 输出增大200 */}else if (key == KEY1_PRES){if (dacval > 200)dacval -= 200;else dacval = 0;HAL_DAC_SetValue(&g_dac_handle, DAC_CHANNEL_1, DAC_ALIGN_12B_R, dacval); /* 输出减少200 */}if (t == 10 || key == KEY1_PRES || key == WKUP_PRES)        /* WKUP/KEY1按下了,或者定时时间到了 */{adcx = HAL_DAC_GetValue(&g_dac_handle, DAC_CHANNEL_1);  /* 读取前面设置DAC1_OUT1的值 */lcd_show_xnum(94, 130, adcx, 4, 16, 0, BLUE);           /* 显示DAC寄存器值 */temp = (float)adcx * (3.3 / 4096);                      /* 得到DAC电压值 */adcx = temp;lcd_show_xnum(94, 150, temp, 1, 16, 0, BLUE);           /* 显示电压值整数部分 */temp -= adcx;temp *= 1000;lcd_show_xnum(110, 150, temp, 3, 16, 0X80, BLUE);       /* 显示电压值的小数部分 */adcx = adc3_get_result_average(ADC3_CHY, 20);           /* 得到ADC3通道1的转换结果 */temp = (float)adcx * (3.3 / 4096);                      /* 得到ADC电压值(adc是16bit的) */adcx = temp;lcd_show_xnum(94, 170, temp, 1, 16, 0, BLUE);           /* 显示电压值整数部分 */temp -= adcx;temp *= 1000;lcd_show_xnum(110, 170, temp, 3, 16, 0X80, BLUE);       /* 显示电压值的小数部分 */LED0_TOGGLE();  /* LED0闪烁 */t = 0;}delay_ms(10);}
}

四、DAC输出三角波实验(熟悉)

4.1,实验简要(了解)

在这里插入图片描述

4.2,编程实战:DAC输出三角波实验(掌握)

在这里插入图片描述
dac.c

#include "./BSP/DAC/dac.h"
#include "./SYSTEM/delay/delay.h"DAC_HandleTypeDef g_dac_handle;         /* DAC句柄 *//*** @brief       DAC初始化函数*   @note      本函数支持DAC1_OUT1/2通道初始化*              DAC的输入时钟来自APB1, 时钟频率=36Mhz=27.8ns*              DAC在输出buffer关闭的时候, 输出建立时间: tSETTLING = 4us (F103数据手册有写)*              因此DAC输出的最高速度约为:250Khz, 以10个点为一个周期, 最大能输出25Khz左右的波形** @param       outx: 要初始化的通道. 1,通道1; 2,通道2* @retval      无*/
void dac_init(uint8_t outx)
{GPIO_InitTypeDef gpio_init_struct;DAC_ChannelConfTypeDef dac_ch_conf;__HAL_RCC_DAC_CLK_ENABLE();                                 /* 使能DAC1的时钟 */__HAL_RCC_GPIOA_CLK_ENABLE();                               /* 使能DAC OUT1/2的IO口时钟(都在PA口,PA4/PA5) */gpio_init_struct.Pin = (outx==1)? GPIO_PIN_4 : GPIO_PIN_5;  /* STM32单片机, 总是PA4=DAC1_OUT1, PA5=DAC1_OUT2 */gpio_init_struct.Mode = GPIO_MODE_ANALOG;HAL_GPIO_Init(GPIOA, &gpio_init_struct);g_dac_handle.Instance = DAC;HAL_DAC_Init(&g_dac_handle);                                /* 初始化DAC */dac_ch_conf.DAC_Trigger = DAC_TRIGGER_NONE;                 /* 不使用触发功能 */dac_ch_conf.DAC_OutputBuffer = DAC_OUTPUTBUFFER_DISABLE;    /* DAC1输出缓冲关闭 */switch(outx){case 1:HAL_DAC_ConfigChannel(&g_dac_handle, &dac_ch_conf, DAC_CHANNEL_1);  /* 配置DAC通道1 */HAL_DAC_Start(&g_dac_handle,DAC_CHANNEL_1);                         /* 开启DAC通道1 */break;case 2:HAL_DAC_ConfigChannel(&g_dac_handle, &dac_ch_conf, DAC_CHANNEL_2);  /* 配置DAC通道2 */HAL_DAC_Start(&g_dac_handle,DAC_CHANNEL_2);                         /* 开启DAC通道2 */break;default:break;}}/*** @brief       设置通道1/2输出电压* @param       outx: 1,通道1; 2,通道2* @param       vol : 0~3300,代表0~3.3V* @retval      无*/
void dac_set_voltage(uint8_t outx, uint16_t vol)
{double temp = vol;temp /= 1000;temp = temp * 4096 / 3.3;if (temp >= 4096)temp = 4095;   /* 如果值大于等于4096, 则取4095 */if (outx == 1)   /* 通道1 */{HAL_DAC_SetValue(&g_dac_handle, DAC_CHANNEL_1, DAC_ALIGN_12B_R, temp); /* 12位右对齐数据格式设置DAC值 */}else            /* 通道2 */{HAL_DAC_SetValue(&g_dac_handle, DAC_CHANNEL_2, DAC_ALIGN_12B_R, temp); /* 12位右对齐数据格式设置DAC值 */}
}/***************************************DAC输出三角波实验代码*****************************************//*** @brief       设置DAC_OUT1输出三角波*   @note      输出频率 ≈ 1000 / (dt * samples) Khz, 不过在dt较小的时候,比如小于5us时, 由于delay_us*              本身就不准了(调用函数,计算等都需要时间,延时很小的时候,这些时间会影响到延时), 频率会偏小.* * @param       maxval : 最大值(0 < maxval < 4096), (maxval + 1)必须大于等于samples/2* @param       dt     : 每个采样点的延时时间(单位: us)* @param       samples: 采样点的个数, samples必须小于等于(maxval + 1) * 2 , 且maxval不能等于0* @param       n      : 输出波形个数,0~65535** @retval      无*/
void dac_triangular_wave(uint16_t maxval, uint16_t dt, uint16_t samples, uint16_t n)
{uint16_t i, j;float incval;                           /* 递增量 */float Curval;                           /* 当前值 */if((maxval + 1) <= samples)return ;     /* 数据不合法 */incval = (maxval + 1) / (samples / 2);  /* 计算递增量 */for(j = 0; j < n; j++){ Curval = 0;HAL_DAC_SetValue(&g_dac_handle, DAC_CHANNEL_1, DAC_ALIGN_12B_R, Curval);    /* 先输出0 */for(i = 0; i < (samples / 2); i++)  /* 输出上升沿 */{Curval  +=  incval;             /* 新的输出值 */HAL_DAC_SetValue(&g_dac_handle, DAC_CHANNEL_1, DAC_ALIGN_12B_R, Curval);delay_us(dt);}for(i = 0; i < (samples / 2); i++)  /* 输出下降沿 */{Curval  -=  incval;             /* 新的输出值 */HAL_DAC_SetValue(&g_dac_handle, DAC_CHANNEL_1, DAC_ALIGN_12B_R, Curval);delay_us(dt);}}
}

dac.h

#ifndef __DAC_H
#define __DAC_H#include "./SYSTEM/sys/sys.h"void dac_init(uint8_t outx);                        /* DAC通道1初始化 */
void dac_set_voltage(uint8_t outx, uint16_t vol);   /* 设置通道1/2输出电压 */void dac_triangular_wave(uint16_t maxval, uint16_t dt, uint16_t samples, uint16_t n);   /* 输出三角波 */#endif

main.c

#include "./SYSTEM/sys/sys.h"
#include "./SYSTEM/usart/usart.h"
#include "./SYSTEM/delay/delay.h"
#include "./USMART/usmart.h"
#include "./BSP/LED/led.h"
#include "./BSP/LCD/lcd.h"
#include "./BSP/KEY/key.h"
#include "./BSP/DAC/dac.h"int main(void)
{uint8_t t = 0; uint8_t key;HAL_Init();                         /* 初始化HAL库 */sys_stm32_clock_init(RCC_PLL_MUL9); /* 设置时钟, 72Mhz */delay_init(72);                     /* 延时初始化 */usart_init(115200);                 /* 串口初始化为115200 */usmart_dev.init(72);                /* 初始化USMART */led_init();                         /* 初始化LED */lcd_init();                         /* 初始化LCD */key_init();                         /* 初始化按键 */dac_init(1);                        /* 初始化DAC1_OUT1通道 */lcd_show_string(30,  50, 200, 16, 16, "STM32", RED);lcd_show_string(30,  70, 200, 16, 16, "DAC Triangular WAVE TEST", RED);lcd_show_string(30,  90, 200, 16, 16, "ATOM@ALIENTEK", RED);lcd_show_string(30, 110, 200, 16, 16, "KEY0:Wave1  KEY1:Wave2", RED);lcd_show_string(30, 130, 200, 16, 16, "DAC None", BLUE); /* 提示无输出 */while (1){t++;key = key_scan(0);                           /* 按键扫描 */if (key == KEY0_PRES)                        /* 高采样率 , 约1Khz波形 */{lcd_show_string(30, 130, 200, 16, 16, "DAC Wave1 ", BLUE);dac_triangular_wave(4095, 5, 2000, 100); /* 幅值4095, 采样点间隔5us, 200个采样点, 100个波形 */lcd_show_string(30, 130, 200, 16, 16, "DAC None  ", BLUE);}else if (key == KEY1_PRES)                   /* 低采样率 , 约1Khz波形 */{lcd_show_string(30, 130, 200, 16, 16, "DAC Wave2 ", BLUE);dac_triangular_wave(4095, 500, 20, 100); /* 幅值4095, 采样点间隔500us, 20个采样点, 100个波形 */lcd_show_string(30, 130, 200, 16, 16, "DAC None  ", BLUE);}if (t == 10)                                 /* 定时时间到了 */{LED0_TOGGLE();                           /* LED0闪烁 */t = 0;}delay_ms(10);}
}

五、DAC输出正弦波实验(熟悉)

5.1,实验简要(了解)

在这里插入图片描述

5.2,DAC输出正弦波实验配置步骤(掌握)

在这里插入图片描述

5.3,产生正弦波序列函数介绍(熟悉)

在这里插入图片描述

5.4,编程实战:DAC输出正弦波实验(掌握)

dac3.c

#include "./BSP/ADC/adc3.h"
#include "./SYSTEM/delay/delay.h"ADC_HandleTypeDef g_adc3_handle;         /* ADC句柄 *//*** @brief       ADC3初始化函数*   @note      本函数支持ADC1/ADC2任意通道, 但是不支持ADC3*              我们使用12位精度, ADC采样时钟=12M, 转换时间为: 采样周期 + 12.5个ADC周期*              设置最大采样周期: 239.5, 则转换时间 = 252 个ADC周期 = 21us* @param       无* @retval      无*/
void adc3_init(void)
{GPIO_InitTypeDef gpio_init_struct;RCC_PeriphCLKInitTypeDef adc_clk_init = {0};ADC3_CHY_GPIO_CLK_ENABLE();                                /* IO口时钟使能 */ADC3_CHY_CLK_ENABLE();                                     /* ADC时钟使能 */adc_clk_init.PeriphClockSelection = RCC_PERIPHCLK_ADC;     /* ADC外设时钟 */adc_clk_init.AdcClockSelection = RCC_ADCPCLK2_DIV6;        /* 分频因子6时钟为72M/6=12MHz */HAL_RCCEx_PeriphCLKConfig(&adc_clk_init);                  /* 设置ADC时钟 *//* 设置AD采集通道对应IO引脚工作模式 */gpio_init_struct.Pin = ADC3_CHY_GPIO_PIN;                  /* ADC通道对应的IO引脚 */gpio_init_struct.Mode = GPIO_MODE_ANALOG;                  /* 模拟 */HAL_GPIO_Init(ADC3_CHY_GPIO_PORT, &gpio_init_struct);g_adc3_handle.Instance = ADC_ADCX;                         /* 选择哪个ADC */g_adc3_handle.Init.DataAlign = ADC_DATAALIGN_RIGHT;        /* 数据对齐方式:右对齐 */g_adc3_handle.Init.ScanConvMode = ADC_SCAN_DISABLE;        /* 非扫描模式,仅用到一个通道 */g_adc3_handle.Init.ContinuousConvMode = DISABLE;           /* 关闭连续转换模式 */g_adc3_handle.Init.NbrOfConversion = 1;                    /* 1个转换在规则序列中 也就是只转换规则序列1 */g_adc3_handle.Init.DiscontinuousConvMode = DISABLE;        /* 禁止规则通道组间断模式 */g_adc3_handle.Init.NbrOfDiscConversion = 0;                /* 配置间断模式的规则通道个数,禁止规则通道组间断模式后,此参数忽略 */g_adc3_handle.Init.ExternalTrigConv = ADC_SOFTWARE_START;  /* 触发转换方式:软件触发 */HAL_ADC_Init(&g_adc3_handle);                              /* 初始化 */HAL_ADCEx_Calibration_Start(&g_adc3_handle);               /* 校准ADC */
}/*** @brief       设置ADC通道采样时间* @param       adcx : adc句柄指针,ADC_HandleTypeDef* @param       ch   : 通道号, ADC_CHANNEL_0~ADC_CHANNEL_17* @param       stime: 采样时间  0~7, 对应关系为:*   @arg       ADC_SAMPLETIME_1CYCLE_5, 1.5个ADC时钟周期        ADC_SAMPLETIME_7CYCLES_5, 7.5个ADC时钟周期*   @arg       ADC_SAMPLETIME_13CYCLES_5, 13.5个ADC时钟周期     ADC_SAMPLETIME_28CYCLES_5, 28.5个ADC时钟周期*   @arg       ADC_SAMPLETIME_41CYCLES_5, 41.5个ADC时钟周期     ADC_SAMPLETIME_55CYCLES_5, 55.5个ADC时钟周期*   @arg       ADC_SAMPLETIME_71CYCLES_5, 71.5个ADC时钟周期     ADC_SAMPLETIME_239CYCLES_5, 239.5个ADC时钟周期* @param       rank: 多通道采集时需要设置的采集编号,假设你定义channle1的rank=1,channle2 的rank=2,那么对应你在DMA缓存空间的变量数组AdcDMA[0] 就i是channle1的转换结果,AdcDMA[1]就是通道2的转换结果。 单通道DMA设置为 ADC_REGULAR_RANK_1*   @arg       编号1~16:ADC_REGULAR_RANK_1~ADC_REGULAR_RANK_16* @retval      无*/
void adc3_channel_set(ADC_HandleTypeDef *adc_handle, uint32_t ch, uint32_t rank, uint32_t stime)
{ADC_ChannelConfTypeDef adc_ch_conf;adc_ch_conf.Channel = ch;                            /* 通道 */adc_ch_conf.Rank = rank;                             /* 序列 */adc_ch_conf.SamplingTime = stime;                    /* 采样时间 */HAL_ADC_ConfigChannel(adc_handle, &adc_ch_conf);     /* 通道配置 */
}/*** @brief       获得ADC转换后的结果* @param       ch: 通道值 0~17,取值范围为:ADC_CHANNEL_0~ADC_CHANNEL_17* @retval      无*/
uint32_t adc3_get_result(uint32_t ch)
{adc3_channel_set(&g_adc3_handle , ch, ADC_REGULAR_RANK_1, ADC_SAMPLETIME_239CYCLES_5);    /* 设置通道,序列和采样时间 */HAL_ADC_Start(&g_adc3_handle);                            /* 开启ADC */HAL_ADC_PollForConversion(&g_adc3_handle, 10);            /* 轮询转换 */return (uint16_t)HAL_ADC_GetValue(&g_adc3_handle);        /* 返回最近一次ADC1规则组的转换结果 */
}/*** @brief       获取通道ch的转换值,取times次,然后平均* @param       ch      : 通道号, 0~17* @param       times   : 获取次数* @retval      通道ch的times次转换结果平均值*/
uint32_t adc3_get_result_average(uint32_t ch, uint8_t times)
{uint32_t temp_val = 0;uint8_t t;for (t = 0; t < times; t++)     /* 获取times次数据 */{temp_val += adc3_get_result(ch);delay_ms(5);}return temp_val / times;        /* 返回平均值 */
}

dac3.h

#ifndef __ADC_H
#define __ADC_H#include "./SYSTEM/sys/sys.h"
/******************************************************************************************/
/* ADC及引脚 定义 */#define ADC3_CHY_GPIO_PORT                  GPIOA
#define ADC3_CHY_GPIO_PIN                   GPIO_PIN_1 
#define ADC3_CHY_GPIO_CLK_ENABLE()          do{ __HAL_RCC_GPIOA_CLK_ENABLE(); }while(0)  /* PA口时钟使能 */#define ADC_ADCX                            ADC3 
#define ADC3_CHY                            ADC_CHANNEL_1                                /* 通道Y,  0 <= Y <= 17 */ 
#define ADC3_CHY_CLK_ENABLE()               do{ __HAL_RCC_ADC3_CLK_ENABLE(); }while(0)   /* ADC1 时钟使能 *//******************************************************************************************/void adc3_init(void);                                          /* ADC3初始化 */
void adc3_channel_set(ADC_HandleTypeDef *adc_handle, uint32_t ch, uint32_t rank, uint32_t stime);   /* ADC3通道设置 */
uint32_t adc3_get_result(uint32_t ch);                         /* 获得某个通道值  */
uint32_t adc3_get_result_average(uint32_t ch, uint8_t times);  /* 得到某个通道给定次数采样的平均值 */#endif 

dac.c

#include "./BSP/DAC/dac.h"
#include "./SYSTEM/delay/delay.h"DAC_HandleTypeDef g_dac_handle;         /* DAC句柄 *//*** @brief       DAC初始化函数*   @note      本函数支持DAC1_OUT1/2通道初始化*              DAC的输入时钟来自APB1, 时钟频率=36Mhz=27.8ns*              DAC在输出buffer关闭的时候, 输出建立时间: tSETTLING = 4us (F103数据手册有写)*              因此DAC输出的最高速度约为:250Khz, 以10个点为一个周期, 最大能输出25Khz左右的波形** @param       outx: 要初始化的通道. 1,通道1; 2,通道2* @retval      无*/
void dac_init(uint8_t outx)
{GPIO_InitTypeDef gpio_init_struct;DAC_ChannelConfTypeDef dac_ch_conf;__HAL_RCC_DAC_CLK_ENABLE();                                 /* 使能DAC1的时钟 */__HAL_RCC_GPIOA_CLK_ENABLE();                               /* 使能DAC OUT1/2的IO口时钟(都在PA口,PA4/PA5) */gpio_init_struct.Pin = (outx==1)? GPIO_PIN_4 : GPIO_PIN_5;  /* STM32单片机, 总是PA4=DAC1_OUT1, PA5=DAC1_OUT2 */gpio_init_struct.Mode = GPIO_MODE_ANALOG;HAL_GPIO_Init(GPIOA, &gpio_init_struct);g_dac_handle.Instance = DAC;HAL_DAC_Init(&g_dac_handle);                                /* 初始化DAC */dac_ch_conf.DAC_Trigger = DAC_TRIGGER_NONE;                 /* 不使用触发功能 */dac_ch_conf.DAC_OutputBuffer = DAC_OUTPUTBUFFER_DISABLE;    /* DAC1输出缓冲关闭 */switch(outx){case 1:HAL_DAC_ConfigChannel(&g_dac_handle, &dac_ch_conf, DAC_CHANNEL_1);  /* 配置DAC通道1 */HAL_DAC_Start(&g_dac_handle,DAC_CHANNEL_1);                         /* 开启DAC通道1 */break;case 2:HAL_DAC_ConfigChannel(&g_dac_handle, &dac_ch_conf, DAC_CHANNEL_2);  /* 配置DAC通道2 */HAL_DAC_Start(&g_dac_handle,DAC_CHANNEL_2);                         /* 开启DAC通道2 */break;default:break;}
}/*** @brief       设置通道1/2输出电压* @param       outx: 1,通道1; 2,通道2* @param       vol : 0~3300,代表0~3.3V* @retval      无*/
void dac_set_voltage(uint8_t outx, uint16_t vol)
{double temp = vol;temp /= 1000;temp = temp * 4096 / 3.3;if (temp >= 4096)temp = 4095;   /* 如果值大于等于4096, 则取4095 */if (outx == 1)   /* 通道1 */{HAL_DAC_SetValue(&g_dac_handle, DAC_CHANNEL_1, DAC_ALIGN_12B_R, temp); /* 12位右对齐数据格式设置DAC值 */}else            /* 通道2 */{HAL_DAC_SetValue(&g_dac_handle, DAC_CHANNEL_2, DAC_ALIGN_12B_R, temp); /* 12位右对齐数据格式设置DAC值 */}
}/***************************************DAC输出三角波实验代码*****************************************//*** @brief       设置DAC_OUT1输出三角波*   @note      输出频率 ≈ 1000 / (dt * samples) Khz, 不过在dt较小的时候,比如小于5us时, 由于delay_us*              本身就不准了(调用函数,计算等都需要时间,延时很小的时候,这些时间会影响到延时), 频率会偏小.* * @param       maxval : 最大值(0 < maxval < 4096), (maxval + 1)必须大于等于samples/2* @param       dt     : 每个采样点的延时时间(单位: us)* @param       samples: 采样点的个数, samples必须小于等于(maxval + 1) * 2 , 且maxval不能等于0* @param       n      : 输出波形个数,0~65535** @retval      无*/
void dac_triangular_wave(uint16_t maxval, uint16_t dt, uint16_t samples, uint16_t n)
{uint16_t i, j;float incval;                           /* 递增量 */float Curval;                           /* 当前值 */if((maxval + 1) <= samples)return ;     /* 数据不合法 */incval = (maxval + 1) / (samples / 2);  /* 计算递增量 */for(j = 0; j < n; j++){ Curval = 0;HAL_DAC_SetValue(&g_dac_handle, DAC_CHANNEL_1, DAC_ALIGN_12B_R, Curval);    /* 先输出0 */for(i = 0; i < (samples / 2); i++)  /* 输出上升沿 */{Curval  +=  incval;             /* 新的输出值 */HAL_DAC_SetValue(&g_dac_handle, DAC_CHANNEL_1, DAC_ALIGN_12B_R, Curval);delay_us(dt);}for(i = 0; i < (samples / 2); i++)  /* 输出下降沿 */{Curval  -=  incval;             /* 新的输出值 */HAL_DAC_SetValue(&g_dac_handle, DAC_CHANNEL_1, DAC_ALIGN_12B_R, Curval);delay_us(dt);}}
}/***************************************DAC输出正弦波实验代码*****************************************/DMA_HandleTypeDef g_dma_dac_handle;             /* 定义要搬运DAC数据的DMA句柄 */
DAC_HandleTypeDef g_dac_dma_handle;             /* 定义DAC(DMA输出)句柄 */extern uint16_t g_dac_sin_buf[4096];            /* 发送数据缓冲区 *//*** @brief       DAC DMA输出波形初始化函数*   @note      本函数支持DAC1_OUT1/2通道初始化*              DAC的输入时钟来自APB1, 时钟频率=36Mhz=27.8ns*              DAC在输出buffer关闭的时候, 输出建立时间: tSETTLING = 4us (F103数据手册有写)*              因此DAC输出的最高速度约为:250Khz, 以10个点为一个周期, 最大能输出25Khz左右的波形** @param       outx: 要初始化的通道. 1,通道1; 2,通道2* @param       par         : 外设地址* @param       mar         : 存储器地址* @retval      无*/
void dac_dma_wave_init(uint8_t outx, uint32_t par, uint32_t mar)
{GPIO_InitTypeDef gpio_init_struct;DAC_ChannelConfTypeDef dac_ch_conf={0};DMA_Channel_TypeDef *dmax_chy;if (outx == 1){dmax_chy = DMA2_Channel3;       /* OUT1对应DMA2_Channel3 */}else{dmax_chy = DMA2_Channel4;       /* OUT2对应DMA2_Channel4 */}__HAL_RCC_GPIOA_CLK_ENABLE();                                           /* DAC通道引脚端口时钟使能 */__HAL_RCC_DAC_CLK_ENABLE();                                             /* 使能DAC1的时钟 */__HAL_RCC_DMA2_CLK_ENABLE();                                            /* DMA2时钟使能 */gpio_init_struct.Pin = (outx==1)? GPIO_PIN_4 : GPIO_PIN_5;              /* STM32单片机, 总是PA4=DAC1_OUT1, PA5=DAC1_OUT2 */gpio_init_struct.Mode = GPIO_MODE_ANALOG;                               /* 模拟 */HAL_GPIO_Init(GPIOA, &gpio_init_struct);/* 初始化DMA */g_dma_dac_handle.Instance = dmax_chy;                                   /* 设置DMA通道 */g_dma_dac_handle.Init.Direction = DMA_MEMORY_TO_PERIPH;                 /* 从存储器到外设模式 */g_dma_dac_handle.Init.PeriphInc = DMA_PINC_DISABLE;                     /* 外设非增量模式 */g_dma_dac_handle.Init.MemInc = DMA_MINC_ENABLE;                         /* 存储器增量模式 */g_dma_dac_handle.Init.PeriphDataAlignment = DMA_PDATAALIGN_HALFWORD;    /* 外设数据长度:16位 */g_dma_dac_handle.Init.MemDataAlignment = DMA_MDATAALIGN_HALFWORD;       /* 存储器数据长度:16位 */g_dma_dac_handle.Init.Mode = DMA_CIRCULAR;                              /* 外设流控模式 */g_dma_dac_handle.Init.Priority = DMA_PRIORITY_MEDIUM;                   /* 中等优先级 */HAL_DMA_Init(&g_dma_dac_handle);                                        /* 初始化DMA */HAL_DMA_Start(&g_dma_dac_handle, mar, par, 0);                          /* 配置DMA传输参数 */__HAL_LINKDMA(&g_dac_dma_handle, DMA_Handle1, g_dma_dac_handle);        /* DMA句柄与DAC句柄关联 *//* 初始化DAC */g_dac_dma_handle.Instance = DAC;HAL_DAC_Init(&g_dac_dma_handle);                                        /* 初始化DAC *//* 配置DAC通道 */dac_ch_conf.DAC_Trigger = DAC_TRIGGER_T7_TRGO;                          /* 不使用触发功能 */dac_ch_conf.DAC_OutputBuffer = DAC_OUTPUTBUFFER_DISABLE;                /* DAC1输出缓冲关闭 */switch(outx){case 1:HAL_DAC_ConfigChannel(&g_dac_dma_handle, &dac_ch_conf, DAC_CHANNEL_1);   /* 配置DAC通道1 */break;case 2:HAL_DAC_ConfigChannel(&g_dac_dma_handle, &dac_ch_conf, DAC_CHANNEL_2);   /* 配置DAC通道2 */break;default:break;}
}/*** @brief       DAC DMA使能波形输出*   @note      TIM7的输入时钟频率(f)来自APB1, f = 36M * 2 = 72Mhz.*              DAC触发频率 ftrgo = f / ((psc + 1) * (arr + 1))*              波形频率 = ftrgo / ndtr; ** @param       ndtr        : DMA通道单次传输数据量* @param       arr         : TIM7的自动重装载值* @param       psc         : TIM7的分频系数* @retval      无*/
void dac_dma_wave_enable(uint16_t cndtr, uint16_t arr, uint16_t psc)
{TIM_HandleTypeDef tim7_handle= {0};TIM_MasterConfigTypeDef tim_master_config= {0};__HAL_RCC_TIM7_CLK_ENABLE();                              /* TIM7时钟使能 */ tim7_handle.Instance = TIM7;                              /* 选择定时器7 */tim7_handle.Init.Prescaler = psc;                         /* 预分频 */tim7_handle.Init.CounterMode = TIM_COUNTERMODE_UP;        /* 递增计数器 */tim7_handle.Init.Period = arr;                            /* 自动装载值 */HAL_TIM_Base_Init(&tim7_handle);                          /* 初始化定时器7 */tim_master_config.MasterOutputTrigger = TIM_TRGO_UPDATE;                  /* 定时器更新事件用于触发 */tim_master_config.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;HAL_TIMEx_MasterConfigSynchronization(&tim7_handle, &tim_master_config);  /* 配置定时器7的更新事件触发DAC转换 */HAL_TIM_Base_Start(&tim7_handle);                                         /* 启动定时器7 */HAL_DAC_Stop_DMA(&g_dac_dma_handle, DAC_CHANNEL_1);                       /* 先停止之前的传输 */HAL_DAC_Start_DMA(&g_dac_dma_handle, DAC_CHANNEL_1, (uint32_t *)g_dac_sin_buf, cndtr, DAC_ALIGN_12B_R);
}

dac.h

#ifndef __DAC_H
#define __DAC_H#include "./SYSTEM/sys/sys.h"void dac_init(uint8_t outx);                        /* DAC通道1初始化 */ 
void dac_set_voltage(uint8_t outx, uint16_t vol);   /* 设置通道1/2输出电压 */void dac_triangular_wave(uint16_t maxval, uint16_t dt, uint16_t samples, uint16_t n);   /* 输出三角波 */void dac_dma_wave_init(uint8_t outx, uint32_t par, uint32_t mar);                       /* DAC DMA输出波形初始化函数 */
void dac_dma_wave_enable(uint16_t cndtr, uint16_t arr, uint16_t psc);                   /* DAC DMA输出波形使能 */#endif

main.c

#include "./SYSTEM/sys/sys.h"
#include "./SYSTEM/usart/usart.h"
#include "./SYSTEM/delay/delay.h"
#include "./USMART/usmart.h"
#include "./BSP/LED/led.h"
#include "./BSP/LCD/lcd.h"
#include "./BSP/KEY/key.h"
#include "./BSP/DAC/dac.h"
#include "./BSP/ADC/adc3.h"
#include "math.h"extern ADC_HandleTypeDef g_adc3_handle;  /* ADC句柄 */uint16_t g_dac_sin_buf[4096];            /* 发送数据缓冲区 *//*** @brief       产生正弦波函序列*   @note      需保证: maxval > samples/2** @param       maxval : 最大值(0 < maxval < 2048)* @param       samples: 采样点的个数** @retval      无*/
void dac_creat_sin_buf(uint16_t maxval, uint16_t samples)
{uint8_t i;float inc = (2 * 3.1415962) / samples; /* 计算增量(一个周期DAC_SIN_BUF个点)*/float outdata = 0;for (i = 0; i < samples; i++){outdata = maxval * (1 + sin(inc * i)); /* 计算以dots个点为周期的每个点的值,放大maxval倍,并偏移到正数区域 */if (outdata > 4095)outdata = 4095; /* 上限限定 *///printf("%f\r\n",outdata);g_dac_sin_buf[i] = outdata;}
}/*** @brief       通过USMART设置正弦波输出参数,方便修改输出频率.* @param       arr : TIM7的自动重装载值* @param       psc : TIM7的分频系数* @retval      无*/
void dac_dma_sin_set(uint16_t arr, uint16_t psc)
{dac_dma_wave_enable(100, arr, psc);
}int main(void)
{uint16_t adcx;float temp;uint8_t t = 0;uint8_t key;HAL_Init();                         /* 初始化HAL库 */sys_stm32_clock_init(RCC_PLL_MUL9); /* 设置时钟, 72Mhz */delay_init(72);                     /* 延时初始化 */usart_init(115200);                 /* 串口初始化为115200 */usmart_dev.init(72);                /* 初始化USMART */led_init();                         /* 初始化LED */lcd_init();                         /* 初始化LCD */key_init();                         /* 初始化按键 */adc3_init();                        /* 初始化ADC */adc3_channel_set(&g_adc3_handle, ADC3_CHY, ADC_CHANNEL_0, ADC_SAMPLETIME_1CYCLE_5);/* 初始化DAC通道1 DMA波形输出 */dac_dma_wave_init(1, (uint32_t)&DAC1->DHR12R1, (uint32_t)g_dac_sin_buf);lcd_show_string(30,  50, 200, 16, 16, "STM32", RED);lcd_show_string(30,  70, 200, 16, 16, "DAC DMA Sine WAVE TEST", RED);lcd_show_string(30,  90, 200, 16, 16, "ATOM@ALIENTEK", RED);lcd_show_string(30, 110, 200, 16, 16, "KEY0:3Khz  KEY1:30Khz", RED);lcd_show_string(30, 130, 200, 16, 16, "DAC VAL:", BLUE);lcd_show_string(30, 150, 200, 16, 16, "DAC VOL:0.000V", BLUE);lcd_show_string(30, 170, 200, 16, 16, "ADC VOL:0.000V", BLUE);dac_creat_sin_buf(2048, 100);dac_dma_wave_enable(100, 10 - 1, 72 - 1);               /* 100Khz触发频率, 100个点, 得到1Khz的正弦波 */while (1){t++;key = key_scan(0);                                  /* 按键扫描 */if (key == KEY0_PRES)                               /* 高采样率 , 约1Khz波形 */{dac_creat_sin_buf(2048, 100);dac_dma_wave_enable(100, 10 - 1, 24 - 1);       /* 300Khz触发频率, 100个点, 得到最高3KHz的正弦波. */}else if (key == KEY1_PRES)                          /* 低采样率 , 约1Khz波形 */{dac_creat_sin_buf(2048, 10);dac_dma_wave_enable(10, 10 - 1, 24 - 1);        /* 300Khz触发频率, 10个点, 可以得到最高30KHz的正弦波. */}adcx = DAC1->DHR12R1;                               /* 获取DAC1_OUT1的输出状态 */lcd_show_xnum(94, 130, adcx, 4, 16, 0, BLUE);       /* 显示DAC寄存器值 */temp = (float)adcx * (3.3 / 4096);                  /* 得到DAC电压值 */adcx = temp;lcd_show_xnum(94, 150, temp, 1, 16, 0, BLUE);       /* 显示电压值整数部分 */temp -= adcx;temp *= 1000;lcd_show_xnum(110, 150, temp, 3, 16, 0X80, BLUE);   /* 显示电压值的小数部分 */adcx = adc3_get_result_average(ADC3_CHY, 10);       /* 得到ADC3通道1的转换结果 */temp = (float)adcx * (3.3 / 4096);                  /* 得到ADC电压值(adc是12bit的) */adcx = temp;lcd_show_xnum(94, 170, temp, 1, 16, 0, BLUE);       /* 显示电压值整数部分 */temp -= adcx;temp *= 1000;lcd_show_xnum(110, 170, temp, 3, 16, 0X80, BLUE);   /* 显示电压值的小数部分 */if (t == 40)        /* 定时时间到了 */{LED0_TOGGLE();  /* LED0闪烁 */t = 0;}delay_ms(5);}
}

六、PWM DAC实验(熟悉)

6.1, PWM DAC应用背景(了解)

在这里插入图片描述

6.2, PWM DAC技术实现原理(了解)

6.2.1,什么是PWM DAC技术?

在这里插入图片描述

6.2.2,用分段函数表示PWM波

在这里插入图片描述
在这里插入图片描述

6.2.3,将PWM波分段函数进行傅里叶级数展开

在这里插入图片描述

6.2.4,PWM DAC的分辨率

在这里插入图片描述

6.2.5,8位分辨率下对RC滤波器的设计要求

在这里插入图片描述

6.2.6,PWM DAC二阶低通滤波器原理图

在这里插入图片描述

6.3,编程实战: PWM DAC实验(掌握)

在这里插入图片描述

adc3.c

#include "./BSP/ADC/adc3.h"
#include "./SYSTEM/delay/delay.h"ADC_HandleTypeDef g_adc3_handle;         /* ADC句柄 *//*** @brief       ADC3初始化函数*   @note      本函数支持ADC1/ADC2任意通道, 但是不支持ADC3*              我们使用12位精度, ADC采样时钟=12M, 转换时间为: 采样周期 + 12.5个ADC周期*              设置最大采样周期: 239.5, 则转换时间 = 252 个ADC周期 = 21us* @param       无* @retval      无*/
void adc3_init(void)
{GPIO_InitTypeDef gpio_init_struct;RCC_PeriphCLKInitTypeDef adc_clk_init = {0};ADC3_CHY_GPIO_CLK_ENABLE();                                /* IO口时钟使能 */ADC3_CHY_CLK_ENABLE();                                     /* ADC时钟使能 */adc_clk_init.PeriphClockSelection = RCC_PERIPHCLK_ADC;     /* ADC外设时钟 */adc_clk_init.AdcClockSelection = RCC_ADCPCLK2_DIV6;        /* 分频因子6时钟为72M/6=12MHz */HAL_RCCEx_PeriphCLKConfig(&adc_clk_init);                  /* 设置ADC时钟 *//* 设置AD采集通道对应IO引脚工作模式 */gpio_init_struct.Pin = ADC3_CHY_GPIO_PIN;                  /* ADC通道对应的IO引脚 */gpio_init_struct.Mode = GPIO_MODE_ANALOG;                  /* 模拟 */HAL_GPIO_Init(ADC3_CHY_GPIO_PORT, &gpio_init_struct);g_adc3_handle.Instance = ADC_ADCX;                         /* 选择哪个ADC */g_adc3_handle.Init.DataAlign = ADC_DATAALIGN_RIGHT;        /* 数据对齐方式:右对齐 */g_adc3_handle.Init.ScanConvMode = ADC_SCAN_DISABLE;        /* 非扫描模式,仅用到一个通道 */g_adc3_handle.Init.ContinuousConvMode = DISABLE;           /* 关闭连续转换模式 */g_adc3_handle.Init.NbrOfConversion = 1;                    /* 1个转换在规则序列中 也就是只转换规则序列1 */g_adc3_handle.Init.DiscontinuousConvMode = DISABLE;        /* 禁止规则通道组间断模式 */g_adc3_handle.Init.NbrOfDiscConversion = 0;                /* 配置间断模式的规则通道个数,禁止规则通道组间断模式后,此参数忽略 */g_adc3_handle.Init.ExternalTrigConv = ADC_SOFTWARE_START;  /* 触发转换方式:软件触发 */HAL_ADC_Init(&g_adc3_handle);                              /* 初始化 */HAL_ADCEx_Calibration_Start(&g_adc3_handle);               /* 校准ADC */
}/*** @brief       设置ADC通道采样时间* @param       adcx : adc句柄指针,ADC_HandleTypeDef* @param       ch   : 通道号, ADC_CHANNEL_0~ADC_CHANNEL_17* @param       stime: 采样时间  0~7, 对应关系为:*   @arg       ADC_SAMPLETIME_1CYCLE_5, 1.5个ADC时钟周期        ADC_SAMPLETIME_7CYCLES_5, 7.5个ADC时钟周期*   @arg       ADC_SAMPLETIME_13CYCLES_5, 13.5个ADC时钟周期     ADC_SAMPLETIME_28CYCLES_5, 28.5个ADC时钟周期*   @arg       ADC_SAMPLETIME_41CYCLES_5, 41.5个ADC时钟周期     ADC_SAMPLETIME_55CYCLES_5, 55.5个ADC时钟周期*   @arg       ADC_SAMPLETIME_71CYCLES_5, 71.5个ADC时钟周期     ADC_SAMPLETIME_239CYCLES_5, 239.5个ADC时钟周期* @param       rank: 多通道采集时需要设置的采集编号,假设你定义channle1的rank=1,channle2 的rank=2,那么对应你在DMA缓存空间的变量数组AdcDMA[0] 就i是channle1的转换结果,AdcDMA[1]就是通道2的转换结果。 单通道DMA设置为 ADC_REGULAR_RANK_1*   @arg       编号1~16:ADC_REGULAR_RANK_1~ADC_REGULAR_RANK_16* @retval      无*/
void adc3_channel_set(ADC_HandleTypeDef *adc_handle, uint32_t ch, uint32_t rank, uint32_t stime)
{ADC_ChannelConfTypeDef adc_ch_conf;adc_ch_conf.Channel = ch;                            /* 通道 */adc_ch_conf.Rank = rank;                             /* 序列 */adc_ch_conf.SamplingTime = stime;                    /* 采样时间 */HAL_ADC_ConfigChannel(adc_handle, &adc_ch_conf);     /* 通道配置 */
}/*** @brief       获得ADC转换后的结果* @param       ch: 通道值 0~17,取值范围为:ADC_CHANNEL_0~ADC_CHANNEL_17* @retval      无*/
uint32_t adc3_get_result(uint32_t ch)
{adc3_channel_set(&g_adc3_handle , ch, ADC_REGULAR_RANK_1, ADC_SAMPLETIME_239CYCLES_5);    /* 设置通道,序列和采样时间 */HAL_ADC_Start(&g_adc3_handle);                            /* 开启ADC */HAL_ADC_PollForConversion(&g_adc3_handle, 10);            /* 轮询转换 */return (uint16_t)HAL_ADC_GetValue(&g_adc3_handle);        /* 返回最近一次ADC1规则组的转换结果 */
}/*** @brief       获取通道ch的转换值,取times次,然后平均* @param       ch      : 通道号, 0~17* @param       times   : 获取次数* @retval      通道ch的times次转换结果平均值*/
uint32_t adc3_get_result_average(uint32_t ch, uint8_t times)
{uint32_t temp_val = 0;uint8_t t;for (t = 0; t < times; t++)     /* 获取times次数据 */{temp_val += adc3_get_result(ch);delay_ms(5);}return temp_val / times;        /* 返回平均值 */
}

adc3.h

#ifndef __ADC_H
#define __ADC_H#include "./SYSTEM/sys/sys.h"/******************************************************************************************/
/* ADC及引脚 定义 */#define ADC3_CHY_GPIO_PORT                  GPIOA
#define ADC3_CHY_GPIO_PIN                   GPIO_PIN_1 
#define ADC3_CHY_GPIO_CLK_ENABLE()          do{ __HAL_RCC_GPIOA_CLK_ENABLE(); }while(0)  /* PA口时钟使能 */#define ADC_ADCX                            ADC3 
#define ADC3_CHY                            ADC_CHANNEL_1                                /* 通道Y,  0 <= Y <= 17 */ 
#define ADC3_CHY_CLK_ENABLE()               do{ __HAL_RCC_ADC3_CLK_ENABLE(); }while(0)   /* ADC1 时钟使能 *//******************************************************************************************/void adc3_init(void);                                          /* ADC3初始化 */
void adc3_channel_set(ADC_HandleTypeDef *adc_handle, uint32_t ch, uint32_t rank, uint32_t stime);   /* ADC3通道设置 */
uint32_t adc3_get_result(uint32_t ch);                         /* 获得某个通道值  */
uint32_t adc3_get_result_average(uint32_t ch, uint8_t times);  /* 得到某个通道给定次数采样的平均值 */#endif 

pwmdac.c

#include "./BSP/PWMDAC/pwmdac.h"TIM_HandleTypeDef g_tim1_handle;         /* 定时器句柄 *//*** @brief       PWM DAC初始化, 实际上就是初始化定时器* @note*              定时器的时钟来自APB1 / APB2, 当APB1 / APB2 分频时, 定时器频率自动翻倍*              所以, 一般情况下, 我们所有定时器的频率, 都是72Mhz 等于系统时钟频率*              定时器溢出时间计算方法: Tout = ((arr + 1) * (psc + 1)) / Ft us.*              Ft = 定时器工作频率, 单位: Mhz** @param       arr: 自动重装值。* @param       psc: 时钟预分频数* @retval      无*/
void pwmdac_init(uint16_t arr, uint16_t psc)
{TIM_OC_InitTypeDef timx_oc_pwmdac = {0};PWMDAC_TIMX_CLK_ENABLE();                                                     /* PWM DAC 定时器时钟使能 */g_tim1_handle.Instance = TIM1;                                                /* 定时器1 */g_tim1_handle.Init.Prescaler = psc;                                           /* 定时器分频 */g_tim1_handle.Init.CounterMode = TIM_COUNTERMODE_UP;                          /* 递增计数模式 */g_tim1_handle.Init.Period = arr;                                              /* 自动重装载值 */g_tim1_handle.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_ENABLE;         /* 使能TIMx_ARR进行缓冲 */HAL_TIM_PWM_Init(&g_tim1_handle);                                             /* 初始化PWM */timx_oc_pwmdac.OCMode = TIM_OCMODE_PWM1;                                      /* CH1/2 PWM模式1 */timx_oc_pwmdac.Pulse = 0;                                                     /* 设置比较值,此值用来确定占空比 */timx_oc_pwmdac.OCPolarity = TIM_OCPOLARITY_HIGH;                              /* 输出比较极性为高 */HAL_TIM_PWM_ConfigChannel(&g_tim1_handle, &timx_oc_pwmdac, PWMDAC_TIMX_CHY);  /* 配置TIM1通道1 */HAL_TIM_PWM_Start(&g_tim1_handle, TIM_CHANNEL_1);                             /* 开启定时器1通道1 */
}/*** @brief       定时器底层驱动,时钟使能,引脚配置* @note*              此函数会被HAL_TIM_PWM_Init()调用* @param       htim:定时器句柄* @retval      无*/
void HAL_TIM_PWM_MspInit(TIM_HandleTypeDef *htim)
{GPIO_InitTypeDef gpio_init_struct;if (htim->Instance == TIM1){__HAL_RCC_TIM1_CLK_ENABLE();                           /* 使能定时器1 */__HAL_AFIO_REMAP_TIM1_PARTIAL();                       /* TIM1通道引脚部分重映射使能 */PWMDAC_GPIO_CLK_ENABLE();                              /* GPIO 时钟使能 */gpio_init_struct.Pin = PWMDAC_GPIO_PIN;gpio_init_struct.Mode = GPIO_MODE_AF_PP;gpio_init_struct.Pull = GPIO_PULLUP;gpio_init_struct.Speed = GPIO_SPEED_FREQ_LOW;HAL_GPIO_Init(PWMDAC_GPIO_PORT, &gpio_init_struct);    /* TIMX PWM CHY 引脚模式设置 */}
}/*** @brief       设置PWM DAC输出电压* @param       vol : 0~3300,代表0~3.3V* @retval      无*/
void pwmdac_set_voltage(uint16_t vol)
{float temp = vol;temp /= 100;                                                    /* 缩小100倍, 得到实际电压值 */temp = temp * 256 / 3.3;                                        /* 将电压转换成PWM占空比 */__HAL_TIM_SET_COMPARE(&g_tim1_handle, PWMDAC_TIMX_CHY, temp);   /* 设置新的占空比 */
}

pwmdac.h

#ifndef __PWMDAC_H
#define __PWMDAC_H#include "./SYSTEM/sys/sys.h"/******************************************************************************************/
/* PWM DAC 引脚 和 定时器 定义 *//* PWMDAC 默认是使用 PA8, 对应的定时器为 TIM1_CH1, 如果你要修改成其他IO输出, 则相应* 的定时器及通道也要进行修改. 请根据实际情况进行修改.*/
#define PWMDAC_GPIO_PORT                    GPIOA
#define PWMDAC_GPIO_PIN                     GPIO_PIN_8
#define PWMDAC_GPIO_CLK_ENABLE()            do{ __HAL_RCC_GPIOB_CLK_ENABLE(); }while(0) /* PA口时钟使能 */#define PWMDAC_TIMX                         TIM1
#define PWMDAC_TIMX_CHY                     TIM_CHANNEL_1                               /* 通道Y,  1<= Y <=4 */
#define PWMDAC_TIMX_CCRX                    PWMDAC_TIMX->CCR1                           /* 通道Y的输出比较寄存器 */
#define PWMDAC_TIMX_CLK_ENABLE()            do{ __HAL_RCC_TIM1_CLK_ENABLE(); }while(0)  /* TIM1 时钟使能 *//******************************************************************************************/void pwmdac_init(uint16_t arr, uint16_t psc);   /* PWM DAC初始化 */
void pwmdac_set_voltage(uint16_t vol);          /* PWM DAC设置输出电压 */#endif

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/483456.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

万界星空科技电子机电行业MES系统,2000元/年起

电子行业在生产管理上具有典型的离散制造特点&#xff0c;采用多品种、多批量或单件的生产组织方式。产品升级换代迅速&#xff0c;生命周期短&#xff0c;变更频繁&#xff0c;版本控制复杂。 同时产品的种类较多&#xff0c;非标准产品多&#xff0c;加工工序复杂&#xff0…

git中将所有修改的文件上传到暂存区

案例&#xff1a; 我将本地的多个文件进行了修改&#xff0c;导致文件发生了变化。使用git status命令&#xff0c;查看文件的状态&#xff0c;发现有多个文件是modified&#xff0c;即被修改了。 本地文件发生了变化&#xff0c;需要将modified的文件添加到暂存区&#xff0c…

【2.3深度学习开发任务实例】(1)神经网络模型的特点【大厂AI课学习笔记】

从本章开始&#xff0c;我把标题的顺序变了一下&#xff0c;大厂AI课笔记&#xff0c;放到后面。因为我发现App上&#xff0c;标题无法显示完全。 从本章开始&#xff0c;要学习深度学习开发任务的全部过程了。 我们将通过小汽车识别赛道上的标志牌&#xff0c;给出检测框&am…

从源码解析Kruise(K8S)原地升级原理

从源码解析Kruise原地升级原理 本文从源码的角度分析 Kruise 原地升级相关功能的实现。 本篇Kruise版本为v1.5.2。 Kruise项目地址: https://github.com/openkruise/kruise 更多云原生、K8S相关文章请点击【专栏】查看&#xff01; 原地升级的概念 当我们使用deployment等Wor…

Nexus 仓库

一、仓库介绍 1.仓库类型 proxy&#xff1a;是远程仓库的代理。比如说在nexus中配置了一个central repository的proxy&#xff0c;当用户向这个proxy请求一个artifact&#xff0c;这个proxy就会先在本地查找&#xff0c;如果找不到的话&#xff0c;就会从远程仓库下载&#x…

NXP实战笔记(六):S32K3xx基于RTD-SDK在S32DS上配置PWM发波

目录 1、概述 2、SDK配置 2.1、Port配置 2.2、Emios_Mcl_Ip 2.3、Emios_Pwm 2.4、代码示例 1、概述 针对S32K3xx芯片&#xff0c;产生PWM的硬件支持单元仅有两个&#xff0c;分别是eMiosx与Flexio. 生成PWM的顺序&#xff0c;按照单片机所用资源进行初始化执行如下 初始化…

linux ext3/ext4文件系统(part2 jbd2)

概述 jbd2&#xff08;journal block device 2&#xff09;是为块存储设计的 wal 机制&#xff0c;它为要写设备的buffer绑定了一个journal_head&#xff0c;这个journal_head与一个transaction绑定&#xff0c;随着事务状态的转移&#xff08;运行&#xff0c;生成日志&#…

水井坊的“美”学度量衡,量不准消费者

文&#xff5c;琥珀食酒社 作者 | 五画 品牌是所以企业梦寐以求的&#xff0c;而品牌路上的荒野又是谁踏错了一步呢&#xff1f; 伴随着白酒行业的集中度的提升&#xff0c;所有企业都在疯狂生长&#xff0c;誓要在本就不多的土壤下开掘出新的良田。 无论是品牌调性还是品牌…

浅谈加密算法(对称加密、非对称加密、混合加密、数字签名、哈希函数)

1、对称加密 对称加密只有一个密钥&#xff0c;直接使用这一个密钥对信息进行加密或解密。这样子就使得对称加密解密十分高效&#xff0c;计算量也相较于非对称加密小很多&#xff0c;适合有大量数据的场合。 密钥只有一个且他一定不能泄漏。由此分发密钥&#xff0c;讲这个密钥…

pikachu靶场-暴力破解

目录 1.基于表单的暴力破解&#xff1a; 2.验证码绕过(on server)&#xff1a; 3.验证码绕过(on client)&#xff1a; 1.基于表单的暴力破解&#xff1a; 个人理解&#xff1a;无验证码和各种校验程序&#xff0c;最为简单的暴力破解。 随便输入错误的账密&#xff0c;burp抓…

【hoare优化版】快速排序算法(2)

目录 GitMidi三数取中 整体思想 图解分析 代码实现 Hoare优化 上篇我们介绍了hoare基础版&#xff0c;但是这种代码存在缺陷&#xff0c;所以我们提出了两种解决方案。主流的解决方案就是【三数取中选key】 GitMidi三数取中 在快排的过程中&#xff0c;每一次我们要取一…

三次样条函数插值(Cubic spline function interpolation)

文章目录 定义具体分析龙格现象样条函数分析代码参考文献定义 已知部分离散的数据,但不知道满足这些数据的函数表达式,插值(和拟合)都是为了找到对应的函数表达式。区别在于,插值函数能够穿过已知点,拟合只求函数图形神似而不求穿过已知点。 具体分析 所谓插值,就是要…