ChatGPT在数据处理中的应用

ChatGPT在数据处理中的应用

今天的这篇文章,让我不断体会AI的强大,愿人类社会在AI的助力下走向更加灿烂辉煌的明天。

扫描下面二维码注册
在这里插入图片描述

​ 数据处理是贯穿整个数据分析过程的关键步骤,主要是对数据进行各种操作,以达到最终的分析目的。数据处理主要包括以下几部分。

1.1 概览数据

​ 接下来的操作基于示例表的样例数据展开。这是一个简短的订单明细表,包含订单ID、用户ID、产品ID、订单日期、用户性别、用户年龄这几列。我们先对这份数据进行概览。

订单ID用户ID产品ID订单日期用户性别用户年龄
1001101100012023-04-0128
1002102100022023-04-01
1003103100032023-04-0122
1004104100012023-04-01
1005105100022023-04-0145
1006106100032023-04-0132
1007101100012023-04-0228
1008102100022023-04-0235
1009103100032023-04-0222
1010104100012023-04-0245

此表格由[小蜜蜂AI网站][https://zglg.work]生成。

1.1.1 ChatGPT帮我做

​ 来看第一种实现方式。只需把数据传给ChatGPT,并发出明确的操作指令即可。源数据一般是CSV格式的,我们需要将其以文本格式传入ChatGPT。下面我们向ChatGPT输入具体操作和数据集。

Screenshot 2024-02-21 at 21.17.16

​ 在输入数据时,我们要将CSV文件转换成可以直接输入ChatGPT中的格式。只需将CSV文件用记事本或文本编辑器打开,然后复制粘贴即可。

​ 按照上面的指令,ChatGPT返回如下表所示的结果。

统计指标订单ID用户ID产品ID用户年龄
数据类型整数整数整数整数
非空值个数1010108
均值1005.5102.51000234.25
中位数1005.5102.51000233.5
最小值10011011000122
最大值10101041000345
标准差2.871.290.827.79

注:订单日期和用户性别列属于文本型数据,无法进行数值统计。

1.1.2 ChatGPT告诉我

​ 来看第二种实现方式,问ChatGPT用什么工具可以及如何实现某个需求。我们需要把数据结构以及具体需求描述清楚,然后发送给ChatGPT。在Excel中概览数据比较简单,这里不展开了,而主要展示在SQL和Python中如何实现。下面是我们向ChatGPT发送的具体内容。

Screenshot 2024-02-21 at 21.24.46

​ ChatGPT收到上述内容以后,返回如下结果。

-- SQL结果
SELECTCOUNT(order_id) AS non_null_order_id_count,    COUNT(DISTINCT user_id) AS non_null_user_id_count,COUNT(DISTINCT product_id) AS non_null_product_id_count,AVG(order_date) AS avg_order_date,PERCENTILE_CONT(0.5) WITHIN GROUP (ORDER BY order_date) AS median_order_date,MIN(order_date) AS min_order_date,MAX(order_date) AS max_order_date,AVG(user_age) AS avg_user_age,STDDEV(user_age) AS stddev_user_age
FROMorders;
import pandas as pdorder_df = pd.read_csv('order.csv')result = order_df.describe().transpose()result['non_null'] = order_df.count()
print(result[['non_null', 'mean', '50%','min', 'max', 'std']])# 运行结果如下:non_null          mean      50%      min      max       std
订单ID        10   1005.500000   1005.5   1001.0   1010.0  3.027650
用户ID        10    103.100000    103.0    101.0    106.0  1.663330
产品ID        10  10001.900000  10002.0  10001.0  10003.0  0.875595
用户年龄         9     32.444444     32.0     22.0     45.0  8.560244Process finished with exit code 0

​ 在SQL结果中,我没有实际去验证。在Python结果中,使用了describe函数,还是很不错的。我们在Python中概览数据时,就是使用该函数。但是describe函数的结果中已经包含了非空值计数,而ChatGPT又单独计算了一次。

1.2 数据预处理

​ 数据预处理主要包括缺失值填充、重复值删除、异常值删除或替换。接下来看看ChatGPT如何帮助我们完成这项工作。

1.2.1 ChatGPT帮我做

​ 第一种实现方式。下面是我们向ChatGPT输入的具体操作和数据集。

Screenshot 2024-02-21 at 22.38.39

​ ChatGPT收到上述内容后,给出如下的Python处理代码及结果。

import pandas as pd
import numpy as np# 创建数据集
data = {'订单ID': [1001, 1002, 1003, 1004, 1005, 1006, 1007, 1008, 1009, 1010],'用户ID': [101, 102, 103, 104, 105, 106, 101, 102, 103, 104],'产品ID': [10001, 10002, 10003, 10001, 10002, 10003, 10001, 10002, 10003, 10001],'订单日期': ['2023-04-01', '2023-04-01', '2023-04-01', '2023-04-01', '2023-04-01', '2023-04-01', '2023-04-02', '2023-04-02', '2023-04-02', '2023-04-02'],'用户性别': ['男', '女', '男', '女', '男', '女', '男', '女', '男', '女'],'用户年龄': [28, 35, 22, np.nan, 45, 32, 28, 35, 22, 45]}df = pd.DataFrame(data)# 找出缺失值并用均值填充
mean_age = df['用户年龄'].mean()
df['用户年龄'] = df['用户年龄'].fillna(mean_age).astype(int)# 去重
df = df.drop_duplicates()# 将年龄大于40的值视作异常并替换为40
df.loc[df['用户年龄'] > 40,'用户年龄'] = 40
df.to_excel('order.xlsx',index=False)   # 我个人添加的,其他部分均由ChatGPT生成
订单ID用户ID产品ID订单日期用户性别用户年龄
1001101100012023-04-0128
1002102100022023-04-0135
1003103100032023-04-0122
1004104100012023-04-0132
1005105100022023-04-0140
1006106100032023-04-0132
1007101100012023-04-0228
1008102100022023-04-0235
1009103100032023-04-0222
1010104100012023-04-0240

​ ChatGPT没有输出哪一列有缺失值,而是直接对缺失值进行了填充,并对年龄大于40的值进行了替换。总体而言结果符合要求。

1.2.2 ChatGPT告诉我

​ 来看第二种实现方式,把数据结构以及具体要进行的操作描述清楚,然后发给ChatGPT。关于数据预处理,在Excel中实现起来比较简单,而主要展示在SQL和Python中如何实现。下面是我们向ChatGPT发送的具体内容。

Screenshot 2024-02-22 at 08.58.36

​ ChatGPT收到上述内容后,返回如下结果。

Hive SQL 实现
1. 填充缺失值并返回数据集
-- 使用均值填充缺失值
SELECT 订单ID,用户ID,产品ID,订单日期,用户性别,COALESCE(用户年龄, AVG(用户年龄) OVER ()) AS 用户年龄
FROM your_table;2. 删除重复行后的数据集
-- 删除重复行
CREATE TABLE temp_table AS
SELECT DISTINCT *
FROM your_table;-- 可选步骤:删除原表,重命名临时表为原表名3. 替换异常值后的数据集
-- 替换年龄大于40的异常值为40
UPDATE your_table
SET 用户年龄 = 40
WHERE 用户年龄 > 40;
Python 实现
1. 填充缺失值并返回数据集import pandas as pd# 读取数据
df = pd.read_csv("your_data.csv")# 使用均值填充缺失值
df['用户年龄'] = df['用户年龄'].fillna(df['用户年龄'].mean())2. 删除重复行后的数据集
# 删除重复行
df = df.drop_duplicates()3. 替换异常值后的数据集
# 替换年龄大于40的异常值为40
df.loc[df['用户年龄'] > 40, '用户年龄'] = 40

​ 在SQL结果中,一个语句就实现了填充功能,其他的功能也都轻松搞定。在Python结果中,准确给出了各个操作的函数代码,还是不错的。可以自行体验一下。

1.3 数据选择

​ 数据选择主要是根据实际需求选择特定的行或列。接下来看看ChatGPT如何帮助我们完成这项工作。

1.3.1 ChatGPT帮我做

​ 看看第一种方式,下面是我们向ChatGPT输入的具体操作和数据集。

Screenshot 2024-02-22 at 09.29.27

​ 按照上面的指令,ChatGPT给出如下的Python代码及返回如下所示结果。

import pandas as pd# 创建数据集
data = {'订单ID': [1001, 1002, 1003, 1004, 1005, 1006, 1007, 1008, 1009, 1010],'用户ID': [101, 102, 103, 104, 105, 106, 101, 102, 103, 104],'产品ID': [10001, 10002, 10003, 10001, 10002, 10003, 10001, 10002, 10003, 10001],'订单日期': ['2023-04-01', '2023-04-01', '2023-04-01', '2023-04-01', '2023-04-01', '2023-04-01', '2023-04-02', '2023-04-02', '2023-04-02', '2023-04-02'],'用户性别': ['男', '女', '男', '女', '男', '女', '男', '女', '男', '女'],'用户年龄': [28, 35, 22, None, 45, 32, 28, 35, 22, 45]
}df = pd.DataFrame(data)# 找出订单日期为“2023-04-01”的女性用户全部订单
filtered_df = df[(df['订单日期'] == '2023-04-01') & (df['用户性别'] == '女')]
print(filtered_df)订单ID  用户ID   产品ID        订单日期 用户性别  用户年龄
1  1002   102  10002  2023-04-0135.0
3  1004   104  10001  2023-04-01    女   NaN
5  1006   106  10003  2023-04-0132.0

​ 可以看到,ChatGPT按照我们的要求完成了任务。

1.3.2 ChatGPT告诉我

​ 看看第二种实现方式。下面是我们向ChatGPT发送的具体内容。

Screenshot 2024-02-22 at 09.35.24

​ 按照上面的指令,ChatGPT返回如下结果。

SQL 结果:
-- 筛选订单日期为“2023-04-01”的女性用户的全部订单
SELECT *
FROM your_table
WHERE 订单日期 = '2023-04-01' AND 用户性别 = '女';
# Python结果
import pandas as pd
# 假设数据已经存储在名为data的pandas DataFrame中
# 如果需要从CSV文件中读取数据,可以使用如下代码:
# data = pd.read_csv('your_csv_file.csv')df = pd.DataFrame(data)# 筛选订单日期为“2023-04-01”的女性用户的全部订单
filtered_df = df[(df['订单日期'] == '2023-04-01') & (df['用户性别'] == '女')]
print(filtered_df)

​ 因为数据选择相关的需求整体比较简单,所以ChatGPT给出的结果都没什么问题。

1.4 数值操作

​ 数值操作主要是对数据进行替换、排序等操作。接下来看看ChatGPT如何帮助我们完成这项工作。

1.4.1 ChatGPT帮我做

看看第一种方式。下面是我们向ChatGPT输入的具体操作和数据集。

Screenshot 2024-02-22 at 09.57.15

​ ChatGPT收到上述内容后,返回如下结果。

import pandas as pd# 创建数据集
data = {'订单ID': [1001, 1002, 1003, 1004, 1005, 1006, 1007, 1008, 1009, 1010],'用户ID': [101, 102, 103, 104, 105, 106, 101, 102, 103, 104],'产品ID': [10001, 10002, 10003, 10001, 10002, 10003, 10001, 10002, 10003, 10001],'订单日期': ['2023-04-01', '2023-04-01', '2023-04-01', '2023-04-01', '2023-04-01', '2023-04-01', '2023-04-02', '2023-04-02', '2023-04-02', '2023-04-02'],'用户性别': ['男', '女', '男', '女', '男', '女', '男', '女', '男', '女'],'用户年龄': [28, 35, 22, None, 45, 32, 28, 35, 22, 45]
}df = pd.DataFrame(data)# 替换年龄大于40的值为40
df.loc[df['用户年龄'] > 40, '用户年龄'] = 40# 按订单日期升序排列
df = df.sort_values(by='订单日期')# 新增一列,内容为该用户的上一笔订单日期
df['上一笔订单日期'] = df.groupby('用户ID')['订单日期'].shift(1)df.to_excel('帮我做.xlsx', index=False)
# 返回最终结果
print(df)

Screenshot 2024-02-22 at 10.03.19

​ 可以看到,ChatGPT给出的结果中,年龄已经按要求替换了,订单日期也升序排列了,新的一列也添加成了,而按订单日期升序排列的操作导致新增的这一列看起来有点乱,但结果是正确的。👍👍👍

1.4.2 ChatGPT告诉我

​ 看看第二种方式。下面是我们向ChatGPT发送的具体内容。

Screenshot 2024-02-22 at 10.23.56

​ ChatGPT收到上述内容后,返回如下结果。

SQL 结果:
-- 1. 将年龄大于40的值替换成40
UPDATE your_table
SET 用户年龄 = 40
WHERE 用户年龄 > 40;-- 2. 将数据按照订单日期进行升序排列
SELECT *
FROM your_table
ORDER BY 订单日期 ASC;-- 3. 新增一列数据,内容为该用户的上一笔订单日期
SELECT *,LAG(订单日期) OVER (PARTITION BY 用户ID ORDER BY 订单日期) AS 上一笔订单日期
FROM your_table;
# Python 结果import pandas as pddata = pd.read_csv('order.csv')
df = pd.DataFrame(data)# 1. 将年龄大于40的值替换成40
df['用户年龄'] = df['用户年龄'].apply(lambda x: min(x, 40))# 2. 将数据按照订单日期进行升序排列
df.sort_values(by='订单日期',inplace=True)# 3. 新增一列数据,内容为该用户的上一笔订单日期
df['上一笔订单日期'] = df.groupby('用户ID')['订单日期'].shift(1)
df.to_excel('帮我做1.xlsx')
print(df)订单ID  用户ID   产品ID        订单日期 用户性别  用户年龄     上一笔订单日期
0  1001   101  10001           2023-04-0128.0         NaN
1  1002   102  10002           2023-04-0135.0         NaN
2  1003   103  10003           2023-04-0122.0         NaN
3  1004   104  10001           2023-04-01    女   NaN         NaN
4  1005   105  10002           2023-04-0140.0         NaN
5  1006   106  10003           2023-04-0132.0         NaN
6  1007   101  10001           2023-04-0228.0  2023-04-01
7  1008   102  10002           2023-04-0235.0  2023-04-01
8  1009   103  10003           2023-04-0222.0  2023-04-01
9  1010   104  10001           2023-04-0240.0  2023-04-01

Screenshot 2024-02-22 at 10.57.26

​ SQL结果的逻辑基本是准确的。这里主要看第三个操作,刚开始的实现逻辑是借助ROW_NUMBER 函数,比较复杂,经过提示可以直接使用LAG函数以后(过程省略),ChatGPT马上给出了正确的答案。

​ Python结果的实现方式和代码完全正确。

1.5 数值运算

​ 数值运算主要是对数据进行算术运算、比较运算、汇总运算等操作。接下来看看ChatGPT如何帮助我们完成这项工作的。

1.5.1 ChatGPT帮我做

​ 看看第一种实现方式。下面是我们向ChatGPT输入的具体操作和数据集。

Screenshot 2024-02-22 at 12.06.38

​ ChatGPT收到上述内容后,Python实现代码及返回结果。

import pandas as pd# 创建数据集
data = {'订单ID': [1001, 1002, 1003, 1004, 1005, 1006, 1007, 1008, 1009, 1010],'用户ID': [101, 102, 103, 104, 105, 106, 101, 102, 103, 104],'产品ID': [10001, 10002, 10003, 10001, 10002, 10003, 10001, 10002, 10003, 10001],'订单日期': ['2023-04-01', '2023-04-01', '2023-04-01', '2023-04-01', '2023-04-01', '2023-04-01', '2023-04-02', '2023-04-02', '2023-04-02', '2023-04-02'],'用户性别': ['男', '女', '男', '女', '男', '女', '男', '女', '男', '女'],'用户年龄': [28, 35, 22, None, 45, 32, 28, 35, 22, 45]
}df = pd.DataFrame(data)# 1. 将订单ID列和产品ID列进行相加,生成新的一列
df['相加结果'] = df['订单ID'] + df['产品ID']# 2. 对用户ID进行非重复值计数
non_duplicate_count = df['用户ID'].nunique()# 返回结果
print("添加相加结果的数据集:")
print(df)
print("\n用户ID的非重复值计数结果:", non_duplicate_count)# 运行结果
添加相加结果的数据集:订单ID  用户ID   产品ID        订单日期 用户性别  用户年龄   相加结果
0  1001   101  10001  2023-04-0128.0  11002
1  1002   102  10002  2023-04-0135.0  11004
2  1003   103  10003  2023-04-0122.0  11006
3  1004   104  10001  2023-04-01    女   NaN  11005
4  1005   105  10002  2023-04-0145.0  11007
5  1006   106  10003  2023-04-0132.0  11009
6  1007   101  10001  2023-04-0228.0  11008
7  1008   102  10002  2023-04-0235.0  11010
8  1009   103  10003  2023-04-0222.0  11012
9  1010   104  10001  2023-04-0245.0  11011用户ID的非重复值计数结果: 6

​ 可以看到,ChatGPT按照我们的要求完成了任务。

1.5.2 ChatGPT告诉我

​ 看看第二种方式。下面是我们向ChatGPT发送的具体内容。

Screenshot 2024-02-22 at 12.19.29

​ ChatGPT收到上述内容以后,返回如下结果。

# SQL结果
-- 1. 将订单ID列和产品ID列进行相加,生成新的一列
ALTER TABLE your_table ADD COLUMN 相加结果 INT;
UPDATE your_table SET 相加结果 = 订单ID + 产品ID;-- 2. 对用户ID进行非重复值计数,返回计数结果
SELECT COUNT(DISTINCT 用户ID) AS 非重复用户数
FROM your_table;
# Python结果
import pandas as pddata = pd.read_csv('order.csv')
df = pd.DataFrame(data)# 1. 将订单ID列和产品ID列进行相加,生成新的一列
df['相加结果'] = df['订单ID'] + df['产品ID']# 2. 对用户ID进行非重复值计数,返回计数结果
non_duplicate_count = df['用户ID'].nunique()# 返回结果
print("添加相加结果的数据集:")
print(df)
print("\n用户ID的非重复值计数结果:", non_duplicate_count)

​ 上述SQL和Python的实现逻辑都是正确的。因为数值运算整体比较简单,所以这里就不举更多例子了,大家可以根据实际的业务需求进行调整。

1.6 数据分组

​ 数据分组是按照某些维度先对数据进行分组,再对分组后的数据进行汇总运算。接下来看看ChatGPT如何帮助我们完成这项工作。

1.6.1 ChatGPT帮我做

​ 看看第一种方式。下面是我们向ChatGPT输入的具体操作和数据集。

Screenshot 2024-02-22 at 12.42.47

​ ChatGPT收到上述内容后,返回如下结果。

Screenshot 2024-02-22 at 12.46.28

​ 可以看到,ChatGPT按照我们的要求完成了任务。

1.6.2 ChatGPT告诉我

​ 看看第二种实现方式。下面是我们向ChatGPT发送的具体内容。

Screenshot 2024-02-22 at 12.52.10

​ ChatGPT收到上述内容后,返回如下结果。

SQL 结果
-- 计算男性和女性的订单数
SELECT 用户性别, COUNT(订单ID) AS 订单数
FROM your_table
GROUP BY 用户性别;-- 计算男性和女性的用户数
SELECT 用户性别, COUNT(DISTINCT 用户ID) AS 用户数
FROM your_table
GROUP BY 用户性别;
# Python结果
import pandas as pddata = pd.read_csv('order.csv')
df = pd.DataFrame(data)# 计算男性和女性的订单数
order_counts = df['用户性别'].value_counts()# 计算男性和女性的用户数
user_counts = df.groupby('用户性别')['用户ID'].nunique()# 返回结果
print("男性和女性各自的订单数:")
print(order_counts)
print("\n男性和女性各自的用户数:")
print(user_counts)# 运行结果如下:
男性和女性各自的订单数:55
Name: 用户性别, dtype: int64男性和女性各自的用户数:
用户性别
女    33
Name: 用户ID, dtype: int64

​ 上述SQL和Python的实现逻辑都是正确的

1.7 时间序列分析

​ 时间序列分析的操作主要时间格式互换、时间索引、时间运算等。接下来看看ChatGPT如何帮助我们完成这项工作。

1.7.1 ChatGPT帮我做

​ 看看第一种方式。下面是我们向ChatGPT输入的具体操作和数据集。

Screenshot 2024-02-22 at 13.10.04

​ ChatGPT收到上述内容后,返回如下所示结果。

Screenshot 2024-02-22 at 13.24.14

1.7.2 ChatGPT帮我做

​ 看看第二种方式,下面我们向ChatGPT发送的具体内容。

Screenshot 2024-02-22 at 13.32.42

​ ChatGPT收到上述内容后,返回如下结果。

SQL 结果
-- 1. 提取订单日期中的日部分,存储在新的一列中
ALTER TABLE your_table ADD COLUMN 日部分 STRING;
UPDATE your_table SET 日部分 = SUBSTR(订单日期, 9, 2);-- 2. 将订单日期向前滑动30天,存储在新的一列中
ALTER TABLE your_table ADD COLUMN 减去30天日期 STRING;
UPDATE your_table SET 减去30天日期 = FROM_UNIXTIME(UNIX_TIMESTAMP(订单日期) - 30*24*60*60, 'yyyy-MM-dd');-- 3. 将订单日期为“2023-04-01”的数据筛选出来
SELECT *
FROM your_table
WHERE 订单日期 = '2023-04-01';
# Python结果
'''import pandas as pd
from datetime import timedelta# 读取数据集
data = pd.read_csv("order.csv")# 提取订单日期中的日部分
data['日'] = pd.to_datetime(data['订单日期']).dt.day
# 将订单日期转换为日期类型
data['订单日期'] = pd.to_datetime(data['订单日期'])# 向前滑动30天
data['提前30天'] = data['订单日期'] - timedelta(days=30)# 筛选订单日期为“2023-04-01”的数据
filtered_data = data[data['订单日期'] == '2023-04-01']
# 打印结果
filtered_data.to_excel('筛选完.xlsx')'''
import pandas as pddata = pd.read_csv('order.csv')
df = pd.DataFrame(data)# 1. 提取订单日期中的日部分,存储在新的一列中
df['日部分'] = df['订单日期'].str[-2:]# 2. 将订单日期向前滑动30天,存储在新的一列中
df['减去30天日期'] = pd.to_datetime(df['订单日期']) - pd.DateOffset(days=30)# 3. 将订单日期为“2023-04-01”的数据筛选出来
filtered_data = df[df['订单日期'] == '2023-04-01']# 返回结果
print("提取订单日期中的日部分和减去30天日期后的数据集:")
print(df[['订单ID', '用户ID', '产品ID', '订单日期', '用户性别', '用户年龄', '日部分', '提前30天']])
print("\n订单日期为'2023-04-01'的数据:")
print(filtered_data)# 运行结果
订单日期为'2023-04-01'的数据:订单ID  用户ID   产品ID        订单日期 用户性别  用户年龄 日部分    提前300  1001   101  		10001  				2023-04-0128.0   1 		2023-03-02
1  1002   102  		10002  				2023-04-0135.0   1 		2023-03-02
2  1003   103  		10003  				2023-04-0122.0   1 		2023-03-02
3  1004   104  		10001  				2023-04-01    女   NaN   1 		2023-03-02
4  1005   105  		10002  				2023-04-0145.0   1 		2023-03-02
5  1006   106  		10003  				2023-04-0132.0   1 		2023-03-02

上述SQL和Python的实现逻辑都是正确的。

所有示例均可在小蜜蜂AI网站实现,网址:https://zglg.work

扫描下面二维码注册

小伟海报

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/485452.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【命令行工具kubectl】

如何在k8s的任意节点使用用kubectl # 正常在node节点上是无法执行kubectl命令 [rootk8s-node-01 ~]# kubectl get pods The connection to the server localhost:8080 was refused - did you specify the right host or port?1、将master节点中/etc/kubernetes/,admin.conf拷…

五分钟了解Python中的函数

函数:函数是组织好的,可重复使用的,用来实现单一,或相关联功能的代码段。 函数的定义 定是函数使用def关键字 def myfunc(x):if x > 0:return x else:return -x 空函数 def emptyfunc():pass 参数检查 def checkfunc(x):i…

2024 Sora来了!“手机Agent智能体”也来了!

近日,Open AI发布了能够根据文本生成超现实视频的工具Sora,多款震撼视频引爆科技圈刷屏,热度持续发酵占据AI领域话题中心,被认为是AGI实现过程里的重大里程碑事件。新一轮的人工智能浪潮给人类未来的生产和生活方式带来巨大而深远…

05 类和对象 3

目录 再谈构造函数static成员友元内部类匿名对象拷贝对象时一些编译器优化再次理解封装 1. 再谈构造函数 1.1 构造函数赋值 在创建对象时,编译器调用构造函数,给对象中各个成员变量一个合适的初始值 class Date { public: Date(int year, int month,…

DTV的LCN功能介绍

文章目录 LCN简介LCN获取LCN Conflict LCN简介 Logical Channel Number(LCN)是数字电视系统中用于标识和组织频道的逻辑编号。LCN的目的是为了方便用户浏览和选择频道,使得数字电视接收设备能够根据这些逻辑编号对频道进行排序和显示。 LCN…

什么情况会发生Full GC?如何避免频繁Full GC?

Minor GC、Major GC 和 Full GC区别? Minor GC、Major GC和Full GC是垃圾回收中的三个重要概念,它们描述了垃圾回收的不同阶段和范围: Minor GC(新生代GC): Minor GC主要关注清理年轻代(Young …

【最新Dubbo3深入理解】Dubbo3中的SPI机制以及IOC、AOP

欢迎关注公众号(通过文章导读关注:【11来了】),及时收到 AI 前沿项目工具及新技术的推送! 在我后台回复 「资料」 可领取编程高频电子书! 在我后台回复「面试」可领取硬核面试笔记! 文章导读地址…

QT-串口工具

一、演示效果 二、关键程序 &#xff1a; #include "mainwindow.h" #include "ui_mainwindow.h"#include <QMessageBox>MainWindow::MainWindow(QWidget *parent) :QMainWindow(parent),ui(new Ui::MainWindow),listPlugins(QList<TabPluginInt…

【Git企业实战开发】Git常用开发流操作总结

【Git企业实战开发】Git常用开发流操作总结 大家好 我是寸铁&#x1f44a; 总结了一篇Git常用开发流操作总结的文章✨ 喜欢的小伙伴可以点点关注 &#x1f49d; 现在刚做项目的伙伴&#xff0c;可能你之前学过git&#xff0c;但是一实战发现不熟悉 没关系&#xff0c;看寸铁这篇…

【Maven】介绍、下载及安装、集成IDEA

目录 一、什么是Maven Maven的作用 Maven模型 Maven仓库 二、下载及安装 三、IDEA集成Maven 1、POM配置详解 2、配置Maven环境 局部配置 全局设置 四、创建Maven项目 五、Maven坐标详解 六、导入Maven项目 方式1&#xff1a;使用Maven面板&#xff0c;快速导入项目 …

Oladance、南卡、韶音开放式耳机怎么样?3个月真实对比测评

​哪款开放式耳机好用&#xff1f;我亲自体验并评测了市场上流行的三个品牌的开放式耳机&#xff1a;Oladance、南卡、韶音。通过深入测试多维度性能表现&#xff0c;确保你能够远离劣质产品可能带来的问题。我想提醒大家&#xff0c;如果选错耳机可能会影响到音乐的真实还原和…

嵌入式学习-qt-Day3

嵌入式学习-qt-Day3 一、思维导图 二、作业 完善对话框&#xff0c;点击登录对话框&#xff0c;如果账号和密码匹配&#xff0c;则弹出信息对话框&#xff0c;给出提示”登录成功“&#xff0c;提供一个Ok按钮&#xff0c;用户点击Ok后&#xff0c;关闭登录界面&#xff0c;跳…