【树】【异或】【深度优先】【DFS时间戳】2322. 从树中删除边的最小分数

作者推荐

【二分查找】【C++算法】378. 有序矩阵中第 K 小的元素

涉及知识点

树 异或 DFS时间戳

LeetCode2322. 从树中删除边的最小分数

存在一棵无向连通树,树中有编号从 0 到 n - 1 的 n 个节点, 以及 n - 1 条边。
给你一个下标从 0 开始的整数数组 nums ,长度为 n ,其中 nums[i] 表示第 i 个节点的值。另给你一个二维整数数组 edges ,长度为 n - 1 ,其中 edges[i] = [ai, bi] 表示树中存在一条位于节点 ai 和 bi 之间的边。
删除树中两条 不同 的边以形成三个连通组件。对于一种删除边方案,定义如下步骤以计算其分数:
分别获取三个组件 每个 组件中所有节点值的异或值。
最大 异或值和 最小 异或值的 差值 就是这一种删除边方案的分数。
例如,三个组件的节点值分别是:[4,5,7]、[1,9] 和 [3,3,3] 。三个异或值分别是 4 ^ 5 ^ 7 = 6、1 ^ 9 = 8 和 3 ^ 3 ^ 3 = 3 。最大异或值是 8 ,最小异或值是 3 ,分数是 8 - 3 = 5 。
返回在给定树上执行任意删除边方案可能的 最小 分数。
示例 1:
在这里插入图片描述

输入:nums = [1,5,5,4,11], edges = [[0,1],[1,2],[1,3],[3,4]]
输出:9
解释:上图展示了一种删除边方案。

  • 第 1 个组件的节点是 [1,3,4] ,值是 [5,4,11] 。异或值是 5 ^ 4 ^ 11 = 10 。
  • 第 2 个组件的节点是 [0] ,值是 [1] 。异或值是 1 = 1 。
  • 第 3 个组件的节点是 [2] ,值是 [5] 。异或值是 5 = 5 。
    分数是最大异或值和最小异或值的差值,10 - 1 = 9 。
    可以证明不存在分数比 9 小的删除边方案。
    示例 2:
    在这里插入图片描述

输入:nums = [5,5,2,4,4,2], edges = [[0,1],[1,2],[5,2],[4,3],[1,3]]
输出:0
解释:上图展示了一种删除边方案。

  • 第 1 个组件的节点是 [3,4] ,值是 [4,4] 。异或值是 4 ^ 4 = 0 。
  • 第 2 个组件的节点是 [1,0] ,值是 [5,5] 。异或值是 5 ^ 5 = 0 。
  • 第 3 个组件的节点是 [2,5] ,值是 [2,2] 。异或值是 2 ^ 2 = 0 。
    分数是最大异或值和最小异或值的差值,0 - 0 = 0 。
    无法获得比 0 更小的分数 0 。

预备知识

性质一:n个数进行异或运算。各位的结果等于各数本位1的数量是否为奇数。
当前 n 为 2 时:只有四种情况 1 ⊕ 1 = 0 , 0 ⊕ 0 = 0 , 0 ⊕ 1 = 1 , 1 ⊕ 0 = 1 全部符合 当 n > 2 时,任意选两个数,运算后 1 的数量奇偶性不变 当前n为2时:只有四种情况1\oplus1= 0, 0\oplus0= 0, 0\oplus1= 1,1\oplus0= 1 全部符合 \\ 当n>2时,任意选两个数,运算后1的数量奇偶性不变 当前n2时:只有四种情况11=0,00=0,01=1,10=1全部符合n>2时,任意选两个数,运算后1的数量奇偶性不变
推论一: n个数的异或,结果与运算顺序无关。
推论二:异或的逆运算就是本身。

深度优先

以任意节点(比如0)为根,除根节点外,每个节点都有且只有一个父节点。枚举两个非根节点A,B,A ≠ \neq =B。设整个树的的异或值c,子树A、B的异或值分别为a,b。删除后A和B连向父节点的边,0节点为根的树、A节点为根的树、B节点为根的树的异或值分别为:
{ c ⊕ a , a ⊕ b , b a 是 b 祖先 c ⊕ b , a , b ⊕ a b 是 a 祖先 c ⊕ a ⊕ b , a , b o t h e r \begin{cases} c \oplus a ,a\oplus b, b & a是b祖先 \\ c \oplus b, a ,b \oplus a & b是a祖先 \\ c\oplus a \oplus b,a,b & other \\ \end{cases} ca,abbcba,bacab,a,bab祖先ba祖先other

一,DFS各子树的异或值,祖先后代关心,时间复杂度O(nn)。
二,枚举两个节点(边),时间复杂度O(nn)。

代码

核心代码

class CNeiBo2
{
public:CNeiBo2(int n, bool bDirect, int iBase = 0) :m_iN(n), m_bDirect(bDirect), m_iBase(iBase){m_vNeiB.resize(n);}CNeiBo2(int n, vector<vector<int>>& edges, bool bDirect, int iBase = 0) :m_iN(n), m_bDirect(bDirect), m_iBase(iBase){m_vNeiB.resize(n);for (const auto& v : edges){m_vNeiB[v[0] - iBase].emplace_back(v[1] - iBase);if (!bDirect){m_vNeiB[v[1] - iBase].emplace_back(v[0] - iBase);}}}inline void Add(int iNode1, int iNode2){iNode1 -= m_iBase;iNode2 -= m_iBase;m_vNeiB[iNode1].emplace_back(iNode2);if (!m_bDirect){m_vNeiB[iNode2].emplace_back(iNode1);}}const int m_iN;const bool m_bDirect;const int m_iBase;vector<vector<int>> m_vNeiB;
};class Solution {
public:int minimumScore(vector<int>& nums, vector<vector<int>>& edges) {m_c = nums.size();CNeiBo2 neiBo(m_c, edges, false);m_vXor.resize(m_c);m_vParent.assign(m_c, vector<bool>(m_c));vector<int> parent;DFS1(neiBo.m_vNeiB, 0, -1, nums, parent);int iRet = INT_MAX;int v[3];for (int i = 1; i < m_c; i++){for (int j = 1; j < m_c; j++){if (i == j){continue;}	if (m_vParent[i][j]){v[0]=(m_vXor[0] ^  m_vXor[j]);v[1] = (m_vXor[i]);v[2] = (m_vXor[j] ^ m_vXor[i]);}else if(m_vParent[j][i]){v[0] = (m_vXor[0] ^ m_vXor[i]);v[1] = (m_vXor[i]^ m_vXor[j]);v[2] = (  m_vXor[j]);}else{v[0] = (m_vXor[0] ^ m_vXor[i] ^ m_vXor[j]);v[1] = (m_vXor[i]);v[2] = (m_vXor[j]);}sort(v, v+3);iRet = min(iRet, v[2] - v[0]);}}return iRet;}int DFS1(vector<vector<int>>& neiBo, int cur, int par, const vector<int>& nums, vector<int>& parent){int ret = nums[cur];for (const auto& par1 : parent){m_vParent[cur][par1] = true;}parent.emplace_back(cur);for (const auto& next : neiBo[cur]){if (next == par){continue;}ret ^= DFS1(neiBo, next, cur, nums, parent);}parent.pop_back();return m_vXor[cur]=ret;}vector<int> m_vXor;vector<vector<bool>> m_vParent;int m_c;
};

测试用例

template<class T,class T2>
void Assert(const T& t1, const T2& t2)
{assert(t1 == t2);
}template<class T>
void Assert(const vector<T>& v1, const vector<T>& v2)
{if (v1.size() != v2.size()){assert(false);return;}for (int i = 0; i < v1.size(); i++){Assert(v1[i], v2[i]);}}int main()
{vector<int> nums;vector<vector<int>> edges;{Solution sln;nums = { 1,5,5,4,11 }, edges = { {0,1},{1,2},{1,3},{3,4} };auto res = sln.minimumScore(nums, edges);Assert(9, res);}{Solution sln;nums = { 5,5,2,4,4,2 }, edges = { {0,1},{1,2},{5,2},{4,3},{1,3} };auto res = sln.minimumScore(nums, edges);Assert(0, res);}
}

利用时间戳优化

已处理的节点中,时间戳大于cur的节点 是后代。两个变量分别记录:cur的时间戳,dfs(cur)结束时的时间戳。

2023年4月

class Solution {
public:
int minimumScore(vector& nums, vector<vector>& edges) {
m_c = nums.size();
m_vNeiB.resize(m_c);
m_vLeve.resize(m_c);
m_vXORSum.resize(m_c);
m_vInTime.resize(m_c);
m_vOutTime.resize(m_c);
m_nums = nums;
for (const auto& v : edges)
{
m_vNeiB[v[0]].emplace_back(v[1]);
m_vNeiB[v[1]].emplace_back(v[0]);
}
dfs(0, -1);
int iRet = INT_MAX;
std:vector v(3);
for (int i = 0; i < edges.size(); i++)
{
int iChild1 = (m_vLeve[edges[i][0]] > m_vLeve[edges[i][1]]) ? edges[i][0] : edges[i][1];
for (int j = i + 1; j < edges.size(); j++)
{
int iChild2 = (m_vLeve[edges[j][0]] > m_vLeve[edges[j][1]]) ? edges[j][0] : edges[j][1];
if (IsGrandParent(iChild1, iChild2))
{
v[0] = (m_vXORSum[iChild2] ^ m_vXORSum[iChild1]);
v[1] = (m_vXORSum[iChild1]);
v[2] = (m_vXORSum[0] ^ m_vXORSum[iChild1] ^ m_vXORSum[iChild2] ^ m_vXORSum[iChild1]);
}
else if (IsGrandParent(iChild2, iChild1))
{
v[0] = (m_vXORSum[iChild1] ^ m_vXORSum[iChild2]);
v[1] = (m_vXORSum[iChild2]);
v[2] = (m_vXORSum[0] ^ m_vXORSum[iChild1] ^ m_vXORSum[iChild2] ^ m_vXORSum[iChild2]);
}
else
{
v[0] = (m_vXORSum[iChild1]);
v[1] = (m_vXORSum[iChild2]);
v[2] = (m_vXORSum[0] ^ m_vXORSum[iChild1] ^ m_vXORSum[iChild2]);
}
const int iCurRet = *std::max_element(v.begin(), v.end()) - *std::min_element(v.begin(), v.end());
iRet = min(iRet, iCurRet);
}
}
return iRet;
}
bool IsGrandParent(int iNode1, int iIsGrandParent)
{
return (m_vInTime[iIsGrandParent] < m_vInTime[iNode1]) && (m_vOutTime[iIsGrandParent] >= m_vOutTime[iNode1]);
}
void dfs(int iCur, int iParent)
{
m_vInTime[iCur] = m_iTime++;
m_vLeve[iCur] = (-1 == iParent) ? 0 : m_vLeve[iParent]+1 ;
int iXorSum = m_nums[iCur];
for (const auto& next : m_vNeiB[iCur])
{
if (next == iParent)
{
continue;
}
dfs(next, iCur);
iXorSum ^= m_vXORSum[next];
}
m_vXORSum[iCur] = iXorSum;
m_vOutTime[iCur] = m_iTime;
}
int m_c;
vector<vector> m_vNeiB;
vector m_vLeve, m_vInTime, m_vOutTime;;
vector m_vXORSum;
vector m_nums;
int m_iTime = 1;
};

扩展阅读

视频课程

有效学习:明确的目标 及时的反馈 拉伸区(难度合适),可以先学简单的课程,请移步CSDN学院,听白银讲师(也就是鄙人)的讲解。
https://edu.csdn.net/course/detail/38771

如何你想快速形成战斗了,为老板分忧,请学习C#入职培训、C++入职培训等课程
https://edu.csdn.net/lecturer/6176

相关下载

想高屋建瓴的学习算法,请下载《喜缺全书算法册》doc版
https://download.csdn.net/download/he_zhidan/88348653

我想对大家说的话
闻缺陷则喜是一个美好的愿望,早发现问题,早修改问题,给老板节约钱。
子墨子言之:事无终始,无务多业。也就是我们常说的专业的人做专业的事。
如果程序是一条龙,那算法就是他的是睛

测试环境

操作系统:win7 开发环境: VS2019 C++17
或者 操作系统:win10 开发环境: VS2022 C++17
如无特殊说明,本算法用**C++**实现。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/511135.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

京东商品优惠券API获取商品到手价

item_get_app-获得JD商品详情原数据 公共参数 请求地址: jd/item_get_app 名称类型必须描述keyString是调用key&#xff08;必须以GET方式拼接在URL中&#xff09;secretString是调用密钥api_nameString是API接口名称&#xff08;包括在请求地址中&#xff09;[item_search,i…

(十五)【Jmeter】取样器(Sampler)之HTTP请求

简述 操作路径如下: HTTP请求 (HTTP Sampler): 作用:模拟发送HTTP请求并获取响应。配置:设置URL、请求方法、请求参数等参数。使用场景:测试Web应用程序的HTTP接口性能。优点:支持多种HTTP方法和请求参数,适用于大多数Web应用程序测试。缺点:功能较为基础,对于复杂…

鸿蒙实战应用开发:【拨打电话】功能

概述 本示例通过输入电话&#xff0c;进行电话拨打&#xff0c;及电话相关信息的显示。 样例展示 涉及OpenHarmony技术特性 网络通信 基础信息 拨打电话 介绍 本示例使用call相关接口实现了拨打电话并显示电话相关信息的功能 效果预览 使用说明 1.输入电话号码后&#…

11. Nginx进阶-HTTPS

简介 基本概述 SSL SSL是安全套接层。 主要用于认证用户和服务器&#xff0c;确保数据发送到正确的客户机和服务器上。 SSL可以加密数据&#xff0c;防止数据中途被窃取。 SSL也可以维护数据的完整性&#xff0c;确保数据在传输过程中不被改变。 HTTPS HTTPS就是基于SSL来…

#QT(串口助手-界面)

1.IDE&#xff1a;QTCreator 2.实验&#xff1a;编写串口助手 3.记录 接收框:Plain Text Edit 属性选择&#xff1a;Combo Box 发送框:Line Edit 广告&#xff1a;Group Box &#xff08;1&#xff09;仿照现有串口助手设计UI界面 &#xff08;2&#xff09;此时串口助手大…

C#插入排序算法

插入排序实现原理 插入排序算法是一种简单、直观的排序算法&#xff0c;其原理是将一个待排序的元素逐个地插入到已经排好序的部分中。 具体实现步骤如下 首先咱们假设数组长度为n&#xff0c;从第二个元素开始&#xff0c;将当前元素存储在临时变量temp中。 从当前元素的前一…

Windows环境MySQL全量备份+增量备份

目录 一、环境准备 1.1.安装MySQL 1.2.添加log-bin日志配置 二、创建测试数据库和表 2.1.创建测试数据库 2.2.创建测试数据表 三、全量备份恢复数据库 3.1.全量备份数据库 3.2全量恢复数据库 四、增量备份恢复数据库 4.1.增量备份数据库 4.2.增量恢复数据库 五、…

避坑——Matlab c# 联合编程——Native

相同的库&#xff0c;Matlab生成供.net调用的库时会有两套&#xff0c;也就是Native&#xff08;本地&#xff09;&#xff0c;两套库各有优缺点&#xff0c;这这里就不说了&#xff0c;可以翻看网上其他博文 主要是MWStructArray&#xff0c;MWArray等数据交换对象有两套&…

科技云报道:阿里云降价,京东云跟进,谁能打赢云计算价格战?

科技云报道原创。 就在大家还在回味2月29日阿里云发布“史上最大降价”的惊喜时&#xff0c;京东云连夜发布降价消息&#xff0c;成为第一家跟进的云服务商&#xff0c;其“随便降&#xff0c;比到底&#xff01;”的口号&#xff0c;颇有对垒的意味&#xff0c;直接吹响了云计…

3.1_2024ctf青少年比赛部分web题

php后门 根据x-powered-by知道php的版本 该版本存在漏洞&#xff1a; PHP 8.1.0-dev 开发版本后门 根据报错信息&#xff0c;进行提示&#xff0c;前 GET / HTTP/1.1 Host: challenge.qsnctf.com:31639 User-Agentt:12345678system(cat /flag);var_dump(2*3);zerodium12345678…

美摄科技实时语音数字人解决方案

随着科技的飞速发展&#xff0c;数字人技术已经逐渐渗透到我们生活的各个角落。作为数字人技术的先驱者&#xff0c;美摄科技凭借其卓越的实时语音数字人解决方案&#xff0c;正引领着企业步入一个全新的交互时代。 美摄科技的实时语音数字人解决方案&#xff0c;是基于语音和…

软件测试--性能测试工具JMeter

软件测试--性能测试工具JMeter 主流性能测试工具1.主流性能测试工具Loadrunner和Jmeter对比 —— 相同点2.主流性能测试工具Loadrunner和Jmeter对比 —— 不同点JMeter基本使用JMeter环境搭建1.安装JDK:2.安装Jmeter:3.注意点:JMeter功能概要1. JMeter文件目录介绍1.1 bin目…