opengl 学习(二)-----你好,三角形

你好,三角形

  • 分类
  • demo
  • 效果
  • 解析

分类

opengl c++

demo

#include "glad/glad.h"
#include "glfw3.h"
#include <iostream>
#include <cmath>
#include <vector>using namespace std;/**
* 在学习此节之前,建议将这三个单词先记下来:
- 顶点数组对象:Vertex Array Object,VAO
- 顶点缓冲对象:Vertex Buffer Object,VBO
- 元素缓冲对象:Element Buffer Object,EBO 或 索引缓冲对象 Index Buffer Object,IBO
*//**
* 在OpenGL中,任何事物都在3D空间中,而屏幕和窗口却是2D像素数组,
这导致OpenGL的大部分工作都是关于把3D坐标转变为适应你屏幕的2D像素。
3D坐标转为2D坐标的处理过程是
由OpenGL的图形渲染管线(Graphics Pipeline,大多译为管线,
实际上指的是一堆原始图形数据途经一个输送管道,
期间经过各种变化处理最终出现在屏幕的过程)管理的。
图形渲染管线可以被划分为两个主要部分:
第一部分把你的3D坐标转换为2D坐标,
第二部分是把2D坐标转变为实际的有颜色的像素。
这个教程里,我们会简单地讨论一下图形渲染管线,以及如何利用它创建一些漂亮的像素。
*//**
* 当今大多数显卡都有成千上万的小处理核心,
它们在GPU上为每一个(渲染管线)阶段运行各自的小程序,
从而在图形渲染管线中快速处理你的数据。这些小程序叫做着色器(Shader)。
*//**
* 首先,我们以数组的形式传递3个3D坐标作为图形渲染管线的输入,
用来表示一个三角形,这个数组叫做顶点数据(Vertex Data);
顶点数据是一系列顶点的集合。
一个顶点(Vertex)是一个3D坐标的数据的集合。
而顶点数据是用顶点属性(Vertex Attribute)表示的,
它可以包含任何我们想用的数据,
但是简单起见,
我们还是假定
每个顶点只由一个3D位置 和一些颜色值组成的吧。
*//**
* 顶点着色器->图元装配->几何着色器->光栅化阶段->裁切
* OpenGL中的一个片段是OpenGL渲染一个像素所需的所有数据。
*//**
* 片段着色器的主要目的是计算一个像素的最终颜色,这也是所有OpenGL高级效果产生的地方。
在现代OpenGL中,
我们必须定义至少一个顶点着色器
和
一个片段着色器(因为GPU中没有默认的顶点/片段着色器)。
出于这个原因,刚开始学习现代OpenGL的时候可能会非常困难,
因为在你能够渲染自己的第一个三角形之前已经需要了解一大堆知识了。
在本节结束你最终渲染出你的三角形的时候,
你也会了解到非常多的图形编程知识。
*//**
* 开始绘制图形之前,我们需要先给OpenGL输入一些顶点数据。
OpenGL是一个3D图形库,
所以在OpenGL中我们指定的所有坐标都是3D坐标(x、y和z)。
OpenGL不是简单地把所有的3D坐标变换为屏幕上的2D像素;
OpenGL仅当3D坐标在3个轴(x、y和z)上-1.0到1.0的范围内时才处理它。
所有在这个范围内的坐标叫做标准化设备坐标(Normalized Device Coordinates),
此范围内的坐标最终显示在屏幕上(在这个范围以外的坐标则不会显示)。
由于我们希望渲染一个三角形,
我们一共要指定三个顶点,
每个顶点都有一个3D位置。
我们会将它们以标准化设备坐标的形式(OpenGL的可见区域)定义为一个float数组。
*/const char* vertexShaderSource = "#version 330 core\n"
"layout (location = 0) in vec3 aPos;\n"
"void main()\n"
"{\n"
"   gl_Position = vec4(aPos.x, aPos.y, aPos.z, 1.0);\n"
"}\0";const char* fragmentShaderSource = "#version 330 core\n"
"out vec4 FragColor;\n"
"void main()\n"
"{\n"
"   FragColor = vec4(1.0f, 0.5f, 0.2f, 1.0f);\n"
"}\n\0";// process all input: query GLFW whether relevant keys are pressed/released this frame and react accordingly
// ---------------------------------------------------------------------------------------------------------
void processInput(GLFWwindow* window)
{if (glfwGetKey(window, GLFW_KEY_ESCAPE) == GLFW_PRESS)glfwSetWindowShouldClose(window, true);
}// glfw: whenever the window size changed (by OS or user resize) this callback function executes
// ---------------------------------------------------------------------------------------------
void framebuffer_size_callback(GLFWwindow* window, int width, int height)
{// make sure the viewport matches the new window dimensions; note that width and // height will be significantly larger than specified on retina displays.glViewport(0, 0, width, height);
}int main()
{glfwInit();glfwWindowHint(GLFW_CONTEXT_VERSION_MAJOR, 3);glfwWindowHint(GLFW_CONTEXT_VERSION_MINOR, 3);glfwWindowHint(GLFW_OPENGL_PROFILE, GLFW_OPENGL_CORE_PROFILE);GLFWwindow* window = glfwCreateWindow(800, 600, "LearnOpenGL", NULL, NULL);if (window == NULL){std::cout << "Failed to create GLFW window" << std::endl;glfwTerminate();return -1;}glfwMakeContextCurrent(window);glfwSetFramebufferSizeCallback(window, framebuffer_size_callback);if (!gladLoadGLLoader((GLADloadproc)glfwGetProcAddress)){std::cout << "Failed to initialize GLAD" << std::endl;return -1;}unsigned int vertexShader = glCreateShader(GL_VERTEX_SHADER);glShaderSource(vertexShader, 1, &vertexShaderSource, NULL);glCompileShader(vertexShader);int success;char infoLog[512];glGetShaderiv(vertexShader, GL_COMPILE_STATUS, &success);if (!success){glGetShaderInfoLog(vertexShader, 512, NULL, infoLog);std::cout << "ERROR::SHADER::VERTEX::COMPILATION_FAILED\n" << infoLog << std::endl;}// fragment shaderunsigned int fragmentShader = glCreateShader(GL_FRAGMENT_SHADER);glShaderSource(fragmentShader, 1, &fragmentShaderSource, NULL);glCompileShader(fragmentShader);// check for shader compile errorsglGetShaderiv(fragmentShader, GL_COMPILE_STATUS, &success);if (!success){glGetShaderInfoLog(fragmentShader, 512, NULL, infoLog);std::cout << "ERROR::SHADER::FRAGMENT::COMPILATION_FAILED\n" << infoLog << std::endl;}// link shadersunsigned int shaderProgram = glCreateProgram();glAttachShader(shaderProgram, vertexShader);glAttachShader(shaderProgram, fragmentShader);glLinkProgram(shaderProgram);// check for linking errorsglGetProgramiv(shaderProgram, GL_LINK_STATUS, &success);if (!success) {glGetProgramInfoLog(shaderProgram, 512, NULL, infoLog);std::cout << "ERROR::SHADER::PROGRAM::LINKING_FAILED\n" << infoLog << std::endl;}glDeleteShader(vertexShader);glDeleteShader(fragmentShader);float vertices[] = {-0.5f, -0.5f, 0.0f,0.5f, -0.5f, 0.0f,0.0f,  0.5f, 0.0f};unsigned int VBO, VAO;glGenVertexArrays(1, &VAO);glGenBuffers(1, &VBO);// bind the Vertex Array Object first, then bind and set vertex buffer(s), and then configure vertex attributes(s).glBindVertexArray(VAO);glBindBuffer(GL_ARRAY_BUFFER, VBO);glBufferData(GL_ARRAY_BUFFER, sizeof(vertices), vertices, GL_STATIC_DRAW);glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 3 * sizeof(float), (void*)0);glEnableVertexAttribArray(0);// note that this is allowed, the call to glVertexAttribPointer registered VBO as the vertex attribute's bound vertex buffer object so afterwards we can safely unbindglBindBuffer(GL_ARRAY_BUFFER, 0);// You can unbind the VAO afterwards so other VAO calls won't accidentally modify this VAO, but this rarely happens. Modifying other// VAOs requires a call to glBindVertexArray anyways so we generally don't unbind VAOs (nor VBOs) when it's not directly necessary.glBindVertexArray(0);// uncomment this call to draw in wireframe polygons.//glPolygonMode(GL_FRONT_AND_BACK, GL_LINE);// render loop// -----------while (!glfwWindowShouldClose(window)){// input// -----processInput(window);// render// ------glClearColor(0.2f, 0.3f, 0.3f, 1.0f);glClear(GL_COLOR_BUFFER_BIT);// draw our first triangleglUseProgram(shaderProgram);glBindVertexArray(VAO); // seeing as we only have a single VAO there's no need to bind it every time, but we'll do so to keep things a bit more organizedglDrawArrays(GL_TRIANGLES, 0, 3);// glBindVertexArray(0); // no need to unbind it every time // glfw: swap buffers and poll IO events (keys pressed/released, mouse moved etc.)// -------------------------------------------------------------------------------glfwSwapBuffers(window);glfwPollEvents();}// optional: de-allocate all resources once they've outlived their purpose:// ------------------------------------------------------------------------glDeleteVertexArrays(1, &VAO);glDeleteBuffers(1, &VBO);glDeleteProgram(shaderProgram);// glfw: terminate, clearing all previously allocated GLFW resources.// ------------------------------------------------------------------glfwTerminate();return 0;
}

效果

请添加图片描述

解析

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

请添加图片描述
在这里插入图片描述

混合决定透明效果
测试决定前后次序

渲染管线的顺序:
顶->三->图->剪->光栅->片元->混测

图元转配是指:把变换后的顶点,根据顺序,组成三角形,直线等图元的过程

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/519900.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

堆和堆排序

堆排序是一种与插入排序和并归排序十分不同的算法。 优先级队列 Priority Queue 优先级队列是类似于常规队列或堆栈数据结构的抽象数据类型&#xff08;ADT&#xff09;。优先级队列中的每个元素都有一个相关联的优先级key。在优先级队列中&#xff0c;高优先级的元素优先于…

【文件增量备份系统】使用Mysql的流式查询优化数据清理性能(针对百万量级数据)

文章目录 功能介绍原始方案测试 流式处理测试 功能可用性测试 功能介绍 清理功能的作用是&#xff1a;扫描数据库中已经备份过的文件&#xff0c;查看数据源中是否还有相应的文件&#xff0c;如果没有&#xff0c;说明该文件被删除了&#xff0c;那相应的&#xff0c;也需要将…

11 OpenCV 上采样与降采样,高斯不同(DOG)

文章目录 算子什么是高斯不同示例 算子 pyrUp(Mat src, Mat dst, Size(src.cols*2, src.rows*2)) 生成的图像是原图在宽与高各放大两倍 pyrDown(Mat src, Mat dst, Size(src.cols/2, src.rows/2)) 生成的图像是原图在宽与高各缩小1/2什么是高斯不同 定义&#xff1a;就是把同…

web学习笔记(二十七)PC端网页特效

目录 1.元素偏移量offset 1.1什么是offset 1.2offset系列常用属性 1.3offset总结 1.4offset 与 style 区别 2.元素可视区client 3.元素滚动scroll 4.总结 4.1三大系列总结 4.2 mouseenter 和mouseover的区别 1.元素偏移量offset 1.1什么是offset offset就是偏移量…

可视化图表:柱坐标系与对应图表详解

一、柱坐标系及其构成 柱状坐标系是一种常见的可视化图表坐标系&#xff0c;用于显示柱状图&#xff08;也称为条形图&#xff09;的数据。它由两个相互垂直的轴组成&#xff0c;一个是水平轴&#xff08;X轴&#xff09;&#xff0c;另一个是垂直轴&#xff08;Y轴&#xff0…

Linux编程3.4 进程-进程标识

1、相关函数 #include<unistd.h> #include<sys/types.h> pid_t getpid(void); 获得当前进程ID uid_t getuid(void); 获得当前进程的实际用户ID uit_t geteuid(void); 获得当前进程的有效用户ID git_t getgid(void); 获得当前进程的用户组ID pit_t getppid(…

深入解析Java中的异常处理机制

摘要&#xff1a; 异常处理是Java编程中不可或缺的一部分&#xff0c;它允许我们以优雅的方式处理程序运行时可能出现的问题。本文将深入探讨Java中的异常处理机制&#xff0c;包括异常类的层次结构、声明异常和处理异常的方法。通过两个实际的代码案例&#xff0c;我们将详细…

Mac版2024 CleanMyMac X 4.14.6 核心功能详解以及永久下载和激活入口

CleanMyMac 是 macOS 上久负盛名的系统清理工具&#xff0c;2018 年&#xff0c;里程碑式版本 CleanMyMac X 正式发布。不仅仅是命名上的变化&#xff0c;焕然一新的 UI、流畅的动画也让它显得更加精致。新增的系统优化、软件更新等功能&#xff0c;使得在日常使用 macOS 时有了…

【问题解决】| 关于vscode调试python文件 报错 且直接运行正常的诡异情况记录

关于python的debug报错&#xff0c;其实很奇怪 首先&#xff0c;对于工作区代码&#xff0c;我们可以通过CtrlShiftP 来切换Python解释器 这样的话&#xff0c;工作区的代码就不会报import error 而且这样的话是可以运行跑通的&#xff0c;但最抽象的一集来了&#xff0c;这…

排序——堆排序

本节继续复习排序算法。这次复习排序算法中的堆排序。 堆排序属于选择排序。 目录 什么是堆&#xff1f; 堆排序 堆排序的思想 堆排代码 向下调整算法 堆排整体 什么是堆&#xff1f; 在复习堆排序之前&#xff0c; 首先我们需要回顾一下什么是堆 。 堆的本质其实是一个数…

Linux文件描述符剖析

文章目录 文件描述符文件描述符分配规则重定向软硬链接软链接&#xff08;Symbolic Link&#xff09;&#xff1a;硬链接&#xff08;Hard Link&#xff09;&#xff1a; 文件描述符 文件描述符&#xff08;File Descriptor&#xff09;是一个非负整数&#xff0c;用于标识打开…

智能控制:物联网智能插座对接文档

介绍 一开始买的某米的插座&#xff0c;但是好像接口不开放&#xff0c;所以找到了这个插座&#xff0c;然后自己开发了下&#xff0c;用接口控制插座开关。wifi的连接方式&#xff0c;通电后一般几秒后就会连接上wifi&#xff0c;这个时候通过接口发送命令给他。 产品图片 通…