【数理统计实验(三)】假设检验的R实现

🍉CSDN小墨&晓末:https://blog.csdn.net/jd1813346972

   个人介绍: 研一|统计学|干货分享
         擅长Python、Matlab、R等主流编程软件
         累计十余项国家级比赛奖项,参与研究经费10w、40w级横向

文章目录

  • 1 不同情形下检验方式
    • 1.1 单正态总体参数的检验
    • 1.2 两正态总体参数的检验
    • 1.3 成对数据的t检验
    • 1.4 单样本比率的检验、两样本比率的检验
  • 2 题目实战
    • 2.1 题目一:z/u检验
    • 2.2 题目二:z/u(t)检验
    • 2.3 题目三:t检验
    • 2.4 题目四:t检验
    • 2.5 题目五:t检验
    • 2.6 题目六:t检验
    • 2.7 题目七:t检验
    • 2.8 题目八:t检验
    • 2.9 题目九:F检验
    • 2.10 题目十:F检验
    • 2.11 题目十一:F(t)检验
    • 2.12 题目十二:z/u检验
    • 2.13 题目十三:两样本比率检验
    • 2.14 题目十四:大样本检验
    • 2.15 题目十五:单样本比率检验
    • 2.16 题目十六:卡方检验
    • 2.17 题目十七:似然检验
    • 2.18 题目十八:Fisher精确检验

该篇文章首先介绍了样本不同情形下的检验方式:单正态总体参数的z/t/卡方检验;两正态总体参数的t/F检验;成对数据的t检验;单样本比率检验、两样本比率检验,然后以例题的形式使用R语言编程结合题目背景完成不同情形下的假设检验并给出详细分析。

1 不同情形下检验方式

1.1 单正态总体参数的检验

  (1)方差 σ 2 \sigma^2 σ2已知时, μ \mu μ的检验:Z检验。

z.test()

  (2)方差 σ 2 \sigma^2 σ2未知时, μ \mu μ的检验:t检验。

t.test()

  (3)方差 σ 2 \sigma^2 σ2的检验: χ 2 \chi ^2 χ2检验。

chisq.var.test( )

1.2 两正态总体参数的检验

  (1)均值的比较:t检验。

t.test(x, y, var.equal=TRUE)

  (2)方差的比较:F检验。

var.test(x, y)

1.3 成对数据的t检验

t.test(x, y, paired=TRUE)

1.4 单样本比率的检验、两样本比率的检验

prop.test( )函数调用格式:prop.test(x, n, p = NULL,alternative = c("two.sided", "less", "greater"),conf.level = 0.95, correct = TRUE)
x为样本中具有某种特性的样本数量, n为样本容量, correct选项为是否做连续性校正。

2 题目实战

2.1 题目一:z/u检验

  有一枪弹,出厂时,其初速率v~N(950,100)(单位:m/s).经过较长时间储存,取9发进行测试,得样本值(单位:m/s)如下:914 920 910 934 953 945 912 924 940。据经验,枪弹经储存后其初速率仍服从正态分布,且标准差保持不变,问是否可以认为这批枪弹的初速率有显著降低。 α = 0.05 \alpha=0.05 α=0.05

  运行程序:

z.test<-function(x,n,sigma,alpha,u0=0,alternative="two.sided"){ options(digits=6)   #结果显示6为有效数result<-list()      #构造一个空的list,用于存放输出结果mean<-mean(x)       #求x的算术平均值z<-(mean-u0)/(sigma/sqrt(n))   #计算z统计量的值p<-pnorm(z,lower.tail=FALSE)   #返回值是正态分布的分布函数值   result$mean<-mean   #将均值存入结果result$z<-z         #将z值存入结果   result$p.value<-p   #得出P值根据其判定参数估计效果ifelse(alternative=="two.sided",result$p.value <- 2*(1-pnorm(abs(z))),    #双侧检验ifelse(alternative=="less",result$p.value <- pnorm(z,lower.tail=T),  #下侧检验ifelse(alternative=="greater",result$p.value <-pnorm(z,lower.tail=F),#上侧检验return("your input is wrong"))))result$conf.int<-c(mean-sigma*qnorm(1-alpha/2,mean=0,sd=1,lower.tail=TRUE)/sqrt(n),mean+sigma*qnorm(1-alpha/2,mean=0,sd=1,lower.tail=TRUE)/sqrt(n))result
}
#调用z.test()函数
z.test(928,9,10,0.05,u0=950,alternative="less") #函数中对应的值分别为样本均值、样本数量、总体标准差、置信水平、检验初速率

  运行结果:

  通过u检验的运行结果可以看出z统计量的值为-6.6,置信区间为[921.476, 934.533],p值= 2.05579 e − 11 < 0.05 2.05579e^{-11}<0.05 2.05579e11<0.05,故拒绝原假设,即可以认为这批枪弹的初速率有显著降低。

2.2 题目二:z/u(t)检验

  从一批钢管抽取10根,测得期内径(单位:mm)为:

  100.36 100.31 99.99 100.11 100.64

  100.85 99.42 99.91 99.35 100.10

  设这批钢管内径服从正态分布N(μ,σ2),试分别在下列条件下检验假设。设(α=0.05)。H0:μ=100 vs H1:μ>100。

(1)已知σ=0.5;(z/u检验)

  运行程序:

z.test(100.104,10,0.5,0.05,u0=100,alternative="less")#将样本均值、样本数量、总体标准差、置信水平、u0带入计算出均值、检验统计量的值、p值、置信区间。

  运行结果:

  通过u检验的运行结果可以看出z统计量的值为0.657754,置信区间为[99.7941,100.4139],p值=0.744652>0.05,故接受原假设,即不能认为这批钢管内径大于100。

(2)σ未知。(t检验)

  运行程序:

salt<-c(100.36,100.31,99.99,100.11,100.64,100.85,99.42,99.91,99.35,100.1)#将样本各个数据定义为一个向量,便于调用
t.test(salt,mu=100,alternative="greater")#将u0等于100带入调用的t检验函数

  运行结果:

  通过t检验的运行结果可以看出t统计量的值为0.691,p值=0.254>0.05,故接受原假设,即不能认为这批钢管内径大于100。

2.3 题目三:t检验

  考察一鱼塘中鱼的含汞量,随机的取10条鱼测得各鱼的含汞量(单位:mg)为:

  0.8 1.6 0.9 0.8 1.2 0.4 0.7 1.0 1.2 1.1

  设鱼的含汞量服从正态分布N(μ,σ2),试检验假设H0:μ<=1.2 vs H1:μ>1.2 (取α=0.1)。

  运行程序:

salt <- c(0.8,1.6,0.9,0.8,1.2,0.4,0.7,1,1.2,1.1)#将样本各个数据定义为一个向量,便于调用
t.test(salt,mu=1.2,alternative="greater",conf.level=0.9)#将u0等于1.2带入调用的t检验函数

  运行结果:

通过t检验的运行结果可以看出t统计量的值为-2.203,p值=0.972>0.05,故接受原假设,即鱼的含汞量没有大于1.2。

2.4 题目四:t检验

  如果一个矩形的宽度w与长度l的比w/l=1/2(√5-1)≈0.618,这样的矩形称为黄金矩形。下面列出从某工艺品工厂随机抽取的20个矩形的长度与宽度的比值.

  0.693 0.749 0.654 0.670 0.662 0.672 0.615 0.606 0.690 0.628

  0.668 0.611 0.606 0.609 0.553 0.570 0.844 0.576 0.933 0.630

  设这一工厂生产的矩形长度与宽度的比值总体服从正态分布其均值未μ,试

  求检验假设(取α=0.05)。

  H0:μ=0.618 vs H1:μ≠0.618。

  运行程序:

salt<-c(0.693,0.749,0.654,0.67,0.662,0.672,0.615,0.606,0.69,0.628,0.668,0.611,0.606,0.609,0.553,0.57,0.844,0.576,0.933,0.63)#将样本各个数据定义为一个向量,便于调用
t.test(salt,mu=0.618,alternative="two.sided")#将u0等于0.618带入调用的t检验函数

  运行结果:

  通过t检验的运行结果可以看出t统计量的值为2.142,p值=0.0453<0.05,故拒绝原假设,即不能认为工厂生产的矩形长度与宽度的比值等于0.618。

2.5 题目五:t检验

  下面给出两种型号的计算器充电以后所能使用的时间(单位:h)的观测值
  型号A:5.5 5.6 6.3 4.6 5.3 5.0 6.2 5.8 5.1 5.2 5.9,
  型号B:3.8 4.3 4.2 4.0 4.9 4.5 5.2 4.8 4.5 3.9 3.7 4.6.
  设两样本独立且数据所属的两总体的密度函数至多差一个平移量,试问能否
  认为型号A的计算器平均使用时间比型号B来的长(取α=0.01)?

  运行程序:

x <- c(5.5,5.6,6.3,4.6,5.3,5.0,6.2,5.8,5.1,5.2,5.9)#将型号A的每一个样本值弄成向量
y <- c(3.8,4.3,4.2,4.0,4.9,4.5,5.2,4.8,4.5,3.9,3.7,4.6)#将型号B的每一个样本值弄成向量
t.test(x,y,var.equal=TRUE)#利用t检验函数进行检验

  运行结果:

  通过t检验的运行结果可以看出t统计量的值为5.484,p值=1.93e-05<0.05,故拒绝原假设,即能认为型号A的计算器平均使用时间比型号B来的长。

2.6 题目六:t检验

  在针织品漂白工艺过程中,要考察温度对针织品断裂强力(主要质量标准)的影响.为了比较70oC与80oC的影响有无差别,在这两个温度下,分别重复做了8次试验,得数据如下(单位:N):

  70oC时的强力:20.5 18.8 19.8 20.9 21.5 19.5 21.0 21.2

  80oC时的强力:17.7 20.3 20.0 18.8 19.0 20.1 20.0 19.1

  根据经验,温度对针织品断裂强度的波动没有影响.问在70oC时的平均断裂强力与80oC时的平均断裂强力间是否有显著差别?(假定断裂强力服从正态分布,α=0.05)。

  运行程序:

x <- c(20.5,18.8,19.8,20.9,21.5,19.5,21.0,21.2)#将70摄氏度时强力的每一个样本值弄成向量
y <- c(17.7,20.3,20.0,18.8,19.0,20.1,20.0,19.1)#将80摄氏度时强力的每一个样本值弄成向量
t.test(x,y,var.equal=TRUE)

  运行结果:

  通过t检验的运行结果可以看出t统计量的值为2.241,p值=0.0418<0.05,故拒绝原假设,即在70oC时的平均断裂强力与80oC时的平均断裂强力间有显著差别。

2.7 题目七:t检验

  对冷却到-0.72℃的样品用A,B两种测量方法测量其融化到0℃时的潜热,数据如下:

  方法A:79.98 80.04 80.02 80.04 80.03 80.03 80.04 79.97 80.05 80.03 80.02 80.00 80.02

  方法B:80.02 79.94 79.98 79.97 80.03 79.95 79.97 79.97

  假设它们服从正态分布,方差相等,试试验:两种测量方法的平均性能是否相等?(取α=0.05)。

  运行程序:

x<-c(79.98,80.04,80.02,80.04,80.03,80.03,80.04,79.97,80.05,80.03,80.02,80.00,80.02)#将使用方法A的每一个样本值弄成向量
y <- c(80.02,79.94,79.98,79.97,80.03,79.95,79.97,79.97)#将使用方法B的每一个样本值弄成向量
t.test(x,y,var.equal=TRUE)#利用t检验函数进行检验

  运行结果:

  通过t检验的运行结果可以看出t统计量的值为3.472,p值=0.00255<0.05,故拒绝原假设,两种测量方法的平均性能不相等。

2.8 题目八:t检验

  为了比较测定活水中氯气含量的两种方法,特在各种场合收集到8个污水水样,每个水样均用这两种方法测定氯气含量(单位:mg/l),具体数据如下:

  设总体为正态分布,试比较两种测定方法是否有显著差异,请写出检验的p值和结论(取α=0.05)。

  运行程序:

x <- c(-0.03, 0.51,0.8,0.57,0.66,0.63,0.18,-0.01)#将差值的到的每一个样本差值弄成向量
t.test(x,mu=0)#利用t检验函数进行检验

  运行结果:

  通过t检验的运行结果可以看出t统计量的值为3.645,p值=0.00823<0.05,故拒绝原假设,两种测量方法有显著差异。

2.9 题目九:F检验

  为比较不同季节出生的女婴体重的方差,从某年12月和6月出生的女婴中分别随机地抽取6名及10名,测其体重(单位:g)如下:

  12月:3520 2960 2560 3260 3960,

  06月:3220 3220 3760 3000 2920 3740 3060 3080 2940 3060.

  假定新生女婴体重服从正态分布,问新生女婴体重的方差是否是冬季比夏季的小(取α=0.05)?

  运行程序:

x <- c(3520,2960,2560,2960,3260,3960)#将12月份每个女婴的体重弄成向量
y <- c(3220,3220,3760,3000,2920,3740,3060,3080,2940,3060)#将6月份每个女婴的体重弄成向量
var.test(x,y)#对假设检验进行F检验

  运行结果:

  通过F检验的运行结果可以看出F统计量的值为2.572,p值=0.207>0.05,故接受原假设,即认为新生女婴体重的方差冬季不比夏季的小。

2.10 题目十:F检验

  两台车床生产同一种滚珠,滚珠直径服从正态分布。从中分别抽取8个和9个产品,测得其直径为

  甲车床:15.0 14.5 15.2 15.5 14.8 15.1 15.2 14.8;

  乙车床:15.2 15.0 14.8 15.2 15.0 15.0 14.8 15.1 14.8.

  比较两台车床生产的滚珠直径的方差是否有明显差异(取α=0.05)。

  运行程序:

x <- c(15.0,14.5,15.2,15.5,14.8,15.1,15.2,14.8)#将甲车床生产的滚珠直径样本值弄成向量
y <- c(15.2,15.0,14.8,15.2,15.0,15.0,14.8,15.1,14.8)#将乙车床生产的滚珠直径样本值弄成向量
var.test(x,y)#对假设检验进行F检验

  运行结果:

  通过F检验的运行结果可以看出F统计量的值为3.659,p值=0.0892>0.05,故接受原假设,即认为两台车床生产的滚珠直径的方差没有明显差异。

2.11 题目十一:F(t)检验

  测得两批电子器件的样品的电阻(单位:Ω)为

  A批(x):0.140 0.138 0.143 0.142 0.144 0.137;

  B批(y):0.135 0.140 0.142 0.136 0.138 0.140.

  设这两批器材的电阻值分别服从分布N(μ1,σ1²),N(μ2,σ2²),且两样本独立。

(1)试检验两个总体的方差是否相等(取α=0.05)?:F检验

  运行程序:

x <- c(0.140,0.138,0.143,0.142,0.144,0.137)#将A批样本电阻值弄成向量
y <- c(0.135,0.140,0.142,0.136,0.138,0.140)#将B批样本电阻值弄成向量
var.test(x,y)#对假设检验进行F检验

  运行结果:

  通过F检验的运行结果可以看出F统计量的值为1.108,p值=0.913>0.05,故接受原假设,即可以认为两总体的方差相等。

(2)试检验两个总体的均值是否相等(取α=0.05)?:t检验

  运行程序:

x <- c(0.140,0.138,0.143,0.142,0.144,0.137)#将A批样本电阻值弄成向量
y <- c(0.135,0.140,0.142,0.136,0.138,0.140)#将B批样本电阻值弄成向量
t.test(x,y,var.equal=TRUE)#对假设检验进行t检验

  运行结果:

  通过t检验的运行结果可以看出t统计量的值为1.372,p值=0.2>0.05,故接受原假设,即可以认为两总体的均值相等。

2.12 题目十二:z/u检验

  从一批服从指数分布的产品中抽取10个进行寿命试验,观测值如下(单位:h):

  1643 1629 426 132 1522 432 1759 1074 528 283.

  根据这批数据能否认为其平均寿命不低于1100h(取α=0.05)?

  运行程序:

z.test=function(x,mu,sigma,theta,alternative="two.sided"){n=length(x)result=list()  #构造一个空的list,用于存放输出结果mean=mean(x)z=2*n*mean/theta#计算z统计量的值options(digits=4)#结果显示至小数点后4位result$mean=mean;result$z=z  #将均值、z值存入结果result$P=2*pnorm(abs(z),lower.tail=FALSE) #根据z计算Pif(alternative=="greater") result$P=pnorm(z,lower.tail=FALSE)else if(alternative=="less") result$P=pnorm(z)result}
data=c(1643,1629,426,132,1522,432,1759,1074,528,283)
z.test(x=data,theta=1100,alternative="less")

  运行结果:

  接受原假设,可以认为其平均寿命不低于1100h。

2.13 题目十三:两样本比率检验

  某大学随机调查120名男同学,发现有50人非常喜欢看武侠小说,而随机查的85名女同学中有23人喜欢,用大样本检验方法在α=0.05下确认:男女同学在喜爱武侠小说方面有无显著差异?并给出检验的p值。

  运行程序:

n <-c (50,23)   #样本中喜欢看武侠小说的人数
m <-c (120,85)   #两样本的样本容量
prop.test(n,m) #选取大样本检验

  运行结果:

  通过大样本检验的运行结果可以看出X统计量为4.015,p值=0.0451<0.05,故拒绝原假设,即认为男女同学在喜爱武侠小说方面有显著差异。

2.14 题目十四:大样本检验

  若在猜硬币正反面游戏中,某人在100次试猜中共猜中60次,你认为他是否有诀窍?(取α=0.05)。

  运行程序:

binom.test(60,100,p=0.5,alternative="greater")
#使用binom.test()进行大样本检测

  运行结果:

  通过大样本检验的运行结果可以看出p值=0.0284<0.05,故拒绝原假设,即认为他有诀窍。

2.15 题目十五:单样本比率检验

  若在猜硬币正反面游戏中,某人在100次试猜中共猜中60次,你认为他是否有诀窍?(取α=0.05)。

  运行程序:

prop.test(60,100,correct=TRUE)

  运行结果:

  接受原假设,有诀窍。

2.16 题目十六:卡方检验

  检查了一本书的100页,记录各页中的印刷错误的个数,其结果如下:

  问能否认为一页的印刷错误个数服从泊松分布?(取α=0.05)。

  运行程序:

z<-(35+40+19+3+2+1)/100  
chisq.fit<-function(x,y,r){options(digits=4)   #结果显示至小数点后4位result<-list()   #构造一个空的list,用于存放输出结果n<-sum(y)prob<-dpois(x,z,log=FALSE)   #z为极大似然估计值y<-c(y,0)m<-length(y)   #m的长度为yprob<-c(prob,1-sum(prob))result$chisq<-sum((y-n*prob)^2/(n*prob))result$p.value<-pchisq(result$chisq,m-r-1,lower.tail=FALSE)result
}x<-c(0,1,2,3,4,5)
y<-c(35,40,19,3,2,1)
chisq.fit(x,y,1)

  运行结果:

  通过运行结果,可以看出p值=0.5849>0.05,故接受原假设,即认为一页的印刷错误个数服从泊松分布。

2.17 题目十七:似然检验

  某种配偶的后代按体格的属性分为三类,各类的数目分别是10,53,46.按照某种遗传模型其频率之比应为p²:2p(1-p):(1-p)²,问数据与模型是否相符(α=0.05)?

  运行程序:

N<-c(10,53,46)
n<-N[1]+N[2]+N[3]
f<-function(p){   #定义函数f用以表示似然函数p^(2*N[1]+N[2])*(1-p)^(N[2]+2*N[3])
}
mle<-optimize(f,c(0,1),maximum = TRUE)   #求极大似然估计
a<-mle$maximum   #所求极大似然估计
b<-c(a^2,2*a*(1-a),(1-a)^2)   #b分别表示p1,p2,p3的值
c<-(N[1]-n*b[1])^2/(n*b[1])+(N[2]-n*b[2])^2/(n*b[2])+(N[3]-n*b[3])^2/(n*b[3])
p<-1-pchisq(c,1)
a
b
c
p

运行结果:

  通过运行结果,可以看出p值=0.3392>0.05,故接受原假设,即认为数据与模型相符合。

2.18 题目十八:Fisher精确检验

  一项是否应提高小学生的计算机课程的比例的调查结果如下:

  问年龄因素是否影响了对问题的回答(α=0.05)?

  运行程序:

a<-matrix(c(32,44,47,28,21,12,14,17,13),
nr=3,   #分类组数为3dimnames=list(c("55+","36~55","15~35"),c("agree","disagree","don't know")))
fisher.test(a)   #Fisher精确检验

  运行结果:

  通过运行结果,可以看出p值=0.05≤0.05,故拒绝原假设,即认为年龄因素影响了对问题的回答。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/527859.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

数字化转型导师坚鹏:科技金融政策、案例及营销创新

科技金融政策、案例及营销创新 课程背景&#xff1a; 很多银行存在以下问题&#xff1a; 不清楚科技金融有哪些利好的政策&#xff1f; 不知道科技金融有哪些成功的案例&#xff1f; 不知道科技金融如何进行营销创新&#xff1f; 课程特色&#xff1a; 以案例的方式解…

Vue 3中的ref:响应式变量的强大工具

&#x1f90d; 前端开发工程师、技术日更博主、已过CET6 &#x1f368; 阿珊和她的猫_CSDN博客专家、23年度博客之星前端领域TOP1 &#x1f560; 牛客高级专题作者、打造专栏《前端面试必备》 、《2024面试高频手撕题》 &#x1f35a; 蓝桥云课签约作者、上架课程《Vue.js 和 E…

【Hello,PyQt】最简单的一些pyqt5程序

pyqt5中的常用模块 模块描述QtWidgets提供了一系列的 UI 组件&#xff0c;如按钮、文本框、窗口等。QtGui包含了绘图、颜色、字体等图形相关的功能。QtCore提供了核心的非图形功能&#xff0c;如事件处理、定时器等。QtNetwork用于网络编程&#xff0c;支持TCP、UDP等协议。Qt…

一图看懂Redis持久化机制!

持久化策略 Redis 提供了两种持久化策略&#xff1a; RDB (Redis Database Snapshot) 持久化机制&#xff0c;会在一段时间内生成指定时间点的数据集快照(snapshot) AOF&#xff08;Append Only File&#xff09; 持久化机制&#xff0c;记录 server 端收到的每一条写命令&am…

YOLO算法改进Backbone系列之:FocalNet

摘要&#xff1a;本文提出焦调制网络(FocalNets)&#xff0c;其中自注意(SA)完全被焦调制模块取代&#xff0c;用于建模视觉中的令牌交互。焦点调制包括三个组成部分&#xff1a;&#xff08;1&#xff09;焦点上下文化&#xff0c;使用深度卷积层堆栈实现&#xff0c;从短范围…

Python实现ETS指标平滑模型(ETSModel算法)项目实战

说明&#xff1a;这是一个机器学习实战项目&#xff08;附带数据代码文档视频讲解&#xff09;&#xff0c;如需数据代码文档视频讲解可以直接到文章最后获取。 1.项目背景 ETS模型&#xff08;Error-Trend-Seasonality Model&#xff09;&#xff0c;是一种广泛应用于时间序列…

哈希表|242.有效的字母异位词

力扣题目链接 bool isAnagram(char* s, char* t) {int len_s strlen(s), len_t strlen(t);if(len_s ! len_t) {return false;}int table[26];memset(table, 0, sizeof(table));for(int i 0; i < len_s; i) {table[s[i] - a];}for(int i 0; i < len_t; i) {table[t[i…

什么是ElasticSearch的深度分页问题?如何解决?

在ElasticSearch中进行分页查询通常使用from和size参数。当我们对ElasticSearch发起一个带有分页参数的查询(如使用from和size参数)时,ElasticSearch需要遍历所以匹配的文档直到达到指定的起始点(from),然后返回从这一点开始的size个文档 在这个例子中: 1.from 参数定义…

[100个Linux常用指令]-吐血推荐,收藏关注

ls - 列出目录cd - 切换目录pwd - 打印工作目录mkdir - 创建目录rmdir - 删除目录touch - 创建空文件rm - 删除文件cp - 复制文件或目录mv - 移动或重命名文件或目录cat - 连接文件并打印到标准输出设备上more - 分页显示文件内容less - 类似于 more&#xff0c;但支持文件内容…

面向对象的编程语言是什么意思?——跟老吕学Python编程

面向对象的编程语言是什么意思&#xff1f;——跟老吕学Python编程 面向对象是什么意思&#xff1f;面向对象的定义面向对象的早期发展面向对象的背景1.审视问题域的视角2.抽象级别3.封装体4.可重用性 面向对象的特征面向对象的开发方法面向对象程序设计基本思想实现 面向对象的…

R语言读取大型NetCDF文件

失踪人口回归&#xff0c;本篇来介绍下R语言读取大型NetCDF文件的一些实践。 1 NetCDF数据简介 先给一段Wiki上关于NetCDF的定义。 NetCDF (Network Common Data Form) is a set of software libraries and self-describing, machine-independent data formats that support…

sql-mysql可视化工具Workbench导入sql文件

mysql可视化工具Workbench导入sql文件 1、打开workbench2、导入sql文件3、第一行加上库名4、开始运行 1、打开workbench 2、导入sql文件 3、第一行加上库名 4、开始运行