【数据结构七】堆与PriorityQueue详解

         在Java中有一种数据结构基于队列,并保证操作的数据带有优先级,该数据结构应该提供了两个最基本的操作,一个是返回最高优先级对象,一个是添加新的对象。这种数据结构就是优先级队列(Priority Queue)。它的底层使用了堆这种数据结构,堆其实就是在二叉树的基础上进行了一些调整。

1.什么是堆

堆的概念:

         堆能把它的所有元素按照完全二叉树的方式存储在一个一维数组中,并保证每次出队列的元素都是这些元素中的最大值或最小值。将根节点最大的堆叫做最大堆或大根堆,根节点最小的堆叫做最小堆或小根堆。

堆的性质:

  •  堆中某个节点的值总是不大于或不小于其父节点的值;
  •  堆总是一颗完全二叉树

                                                                 完全二叉树 

                                                                一般二叉树 

    堆的存储方式:

             前面过二叉树的存储方式有两种,数组或链表,因为数组存储的方式在二叉树不是完全二叉树的情况下,有明显的对内存的浪费,所以我们当时选择了链表的方式,但是堆肯定是一颗完全二叉树,在这里我们利用层序的规则采用数组来高效存储。

  • 如果i为0,则i表示的节点为根节点,否则i节点的双亲节点为 (i - 1)/2
  • 如果2 * i + 1 小于节点个数,则节点i的左孩子下标为2 * i + 1,否则没有左孩子
  • 如果2 * i + 2 小于节点个数,则节点i的右孩子下标为2 * i + 2,否则没有右孩子

2.优先级队列(堆)的实现

我们以创建一个小根堆为例,如何创建一个小根堆呢?

            其实这是一个不断向下调整的过程,定义parent等于二叉树的根节点,同过让它不断与孩子节点进行比较和交换位置,将这样的过程重复就能得到一个堆了,具体过程如下:

1. 让parent标记需要调整的节点,child标记parent的左孩子(注意:parent如果有孩子一定先是有左孩子)
2. 如果parent的左孩子存在,即:child < size, 进行以下操作,直到parent的左孩子不存在

  1. parent右孩子是否存在,存在找到左右孩子中最小的孩子,让child进行标记
  2. 将parent与较小的孩子child比较,如果:
  • parent小于较小的孩子child,调整结束
  • 否则:交换parent与较小的孩子child,交换完成之后,parent中大的元素向下移动,可能导致子树不满足对的性质,因此需要继续向下调整,即parent = child;child = parent*2+1; 然后继续2。

 堆的插入:

堆的插入总共需要两个步骤:
1. 先将元素放入到底层空间中(注意:空间不够时需要扩容)
2. 将最后新插入的节点向上调整,直到满足堆的性质


 

堆的删除: 

    堆的删除一定删除的是堆顶元素。我们可以通过以下步骤进行删除操作:

1. 将堆顶元素对堆中最后一个元素交换
2. 将堆中有效数据个数减少一个
3. 对堆顶元素进行向下调整
 

由上述可知,创建一个自己的堆重点需要手写向上调整,和向下调整的方法,解决了这两个方法,堆的操作便可迎刃而解了。下面的优先级队列的代码实现:

public class MyPriorityQyueue {public int[] array;public int usedSize;public MyPriorityQyueue(){this.array=new int[10];}public void initArray(int[] arr){for(int i=0;i<arr.length;i++){array[i]=arr[i];usedSize++;}}public void createHeap() {for (int parent = (usedSize-1-1)/2; parent >= 0 ; parent--) {shiftDown(parent,usedSize);}}public void offer(int val) {if(isFull()) {//扩容array = Arrays.copyOf(array,2*array.length);}array[usedSize++] = val;//11//向上调整shiftUp(usedSize-1);//10}public int pop() {if(isEmpty()) {return -1;}int ret=array[0];swap(array,0,usedSize-1);usedSize--;shiftDown(0,usedSize);return ret;}public int peek(){if(isEmpty()) {return -1;}return array[0];}public boolean isEmpty() {return usedSize == 0;}private void swap(int[] array,int i,int j) {int tmp = array[i];array[i] = array[j];array[j] = tmp;}public boolean isFull() {return usedSize == array.length;}private void shiftDown(int parent,int len){int child =2*parent+1;while(child<len){if(child+1<len&&array[child]<array[child+1]){child++;}if(array[child]<array[parent]){int tmp=array[child];array[child]=array[parent];array[parent]=tmp;parent=child;child=2*parent+1;}else{break;}}}private void shiftUp(int child) {int parent = (child-1)/2;while (child > 0) {if(array[child] < array[parent]) {int tmp = array[child];array [child] = array[parent];array[parent] = tmp;child = parent;parent = (child-1)/2;}else {break;}}}
}

3.PriorityQueue的使用

     PriorityQueue是Java对堆的一个实现类,继承了Queue接口。

  1. PriorityQueue中放置的元素必须要能够比较大小,不能插入无法比较大小的对象,否则会抛出ClassCastException异常
  2. 不能插入null对象,否则会抛出NullPointerException
  3. 没有容量限制,可以插入任意多个元素,其内部可以自动扩容
  4. 插入和删除元素的时间复杂度为O(log2N)
  5. PriorityQueue底层使用了堆数据结构
  6. PriorityQueue默认情况下是小堆---即每次获取到的元素都是最小的元素

在Java中重写comparator方法可实现小根堆到大根堆的转换:

A=new PriorityQueue<>(new Comparator<Integer>() {@Overridepublic int compare(Integer o1, Integer o2) {return o2-o1;}
});

常用方法:
 

函数名功能介绍
boolean offer(E e)插入元素e,插入成功返回true,e不能为空,会自动扩容。时间复杂度O(log2N)。
E peek()获取优先级最高的元素。
E poll()移除优先级最高的元素并返回。
int size()获取有效元素的个数
void clear()清空
boolean isEmpty()检测优先级队列是否为空。

优先级队列的扩容说明:
如果容量小于64时,是按照oldCapacity的2倍方式扩容的
如果容量大于等于64,是按照oldCapacity的1.5倍方式扩容的
如果容量超过MAX_ARRAY_SIZE,按照MAX_ARRAY_SIZE来进行扩容

4.优先级队列的应用

利用堆排序的思想解决TOP-K问题:

在数据量极大的情况下求数据集合中前K个最大的元素或者最小的元素。

           因为此时数据太大,无法一次性全部加载到内存中,不能使用一般的排序方法来进行求解了,最佳方式用堆求解,思路如下:

1.用数据集合中前K个元素来建堆

                   前k个最大的元素,则建小堆

                   前k个最小的元素,则建大堆

2.用剩余的N-K个元素依次与堆顶元素来比较,不满足则替换堆顶元素

将剩余N-K个元素依次与堆顶元素比完之后,堆中剩余的K个元素就是所求的前K个最小或者最大的元素。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/536767.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Ajax(2)

图片上传 传图片文件不能像传文字一样用JSON格式&#xff0c;可以用form-data类型携带文件 1.获取图片文件对象 2.使用FormData&#xff08;浏览器内置的构造函数&#xff09;携带图片文件 3.提交表单数据到服务器&#xff0c;返回图片网址 这里可能用到的事件监听器&#…

一台服务器部署两个独立的mysql实例

&#x1f341;博主简介&#xff1a; &#x1f3c5;云计算领域优质创作者 &#x1f3c5;2022年CSDN新星计划python赛道第一名 &#x1f3c5;2022年CSDN原力计划优质作者 &#x1f3c5;阿里云ACE认证高级工程师 &#x1f3c5;阿里云开发者社区专…

SpringCloud Gateway 新一代网关

一、前言 接下来是开展一系列的 SpringCloud 的学习之旅&#xff0c;从传统的模块之间调用&#xff0c;一步步的升级为 SpringCloud 模块之间的调用&#xff0c;此篇文章为第六篇&#xff0c;即介绍 Gateway 新一代网关。 二、概述 2.1 Gateway 是什么 Gateway 是在 Spring 生…

【05】消失的数字

hellohello~这里是土土数据结构学习笔记&#x1f973;&#x1f973; &#x1f4a5;个人主页&#xff1a;大耳朵土土垚的博客 &#x1f4a5;所属专栏&#xff1a;C语言函数实现 感谢大家的观看与支持&#x1f339;&#x1f339;&#x1f339; 有问题可以写在评论区或者私信我哦…

力扣506——和为K的子数组

https://leetcode.cn/problems/subarray-sum-equals-k/?envTypestudy-plan-v2&envIdtop-100-liked 1. 用到了前缀和的概念&#xff1a; 给定一个数组nums&#xff0c;从该数组的初始位置元素开始相加&#xff0c;前缀和数组 prefixSum 的第 i 个元素表示从数组开头到第 …

POS 之 验证者如何才能提议区块

验证者提议区块 验证者帐户提议区块。 验证者帐户由节点运营商(可以是AWS等待云服务商)管理&#xff0c;节点运营商运行验证者软件作为其执行和共识客户端的一部分&#xff0c;并且已经向存款合约中存入了至少 32 个以太币 然而&#xff0c;每个验证者只是偶尔负责提议一个区块…

IBFKJ-299 8AI/AO,DI/DO开关量模拟量同时数据采集

产品特点&#xff1a; ● DC12-30V宽压供电&#xff1b; ● RS485通讯光电隔离&#xff0c;输入光耦隔离&#xff0c;继电器输出触点隔离&#xff1b; ●通讯接口支持RS232、RS485&#xff1b; ●支持标准Modbus RTU/TCP/ASCII协议 ●具有闪开、闪断功能&#xff0c;可以在…

使用Spring事件机制,合理的进行业务解耦

文章目录 事件机制介绍一、事件源类二、事件监听类1.方式一&#xff1a;自定义类实现 ApplicationListener 接口&#xff1a;1.方式二&#xff1a;通过注解去标记事件消费方法&#xff1a; 三、事件发布 事件机制介绍 事件发布流程中&#xff0c;有三个核心概念&#xff0c;他…

基于log4cpp封装日志类

一、log4cpp的使用 1. 下载log4cpp log4cpp官方下载地址 2. 安装log4cpp 第一步&#xff1a;解压 tar zxvf log4cpp-1.1.4.tar.gz 第二步&#xff1a;进入log4cpp文件夹并执行 ./configure tips&#xff1a;如果是ARM架构的CPU可能会失败&#xff0c;如下面这种情况&a…

细粒度分析:AI是如何一步步审视你的健康记录的?

细粒度分析&#xff1a;AI是如何一步步审视你的健康记录的&#xff1f; 提出背景AS-LLM 整体框架关联分析 提出背景 论文&#xff1a;https://arxiv.org/pdf/2403.01002.pdf 代码&#xff1a;https://github.com/microsoft/attribute-structuring/ 临床总结在医疗领域有特定的…

论文阅读——Vision Transformer with Deformable Attention

Vision Transformer with Deformable Attention 多头自注意力公式化为&#xff1a; 第l层transformer模块公式化为&#xff1a; 在Transformer模型中简单地实现DCN是一个non-trivial的问题。在DCN中&#xff0c;特征图上的每个元素都单独学习其偏移&#xff0c;其中HWC特征图上…

Windows Server 各版本搭建 Web 服务器实现访问本地 Web 网站(03~19)

一、Windows Server 2003 点击左下角开始➡管理工具➡管理您的服务器&#xff0c;点击添加或删除角色 点击下一步 选择自定义&#xff0c;点击下一步 选择应用程序服务器&#xff0c;点击下一步 不勾选&#xff0c;点击下一步 这里提示插入磁盘&#xff0c;咱们提前下载好 IIS…