生成扩散模型漫谈(三):DDPM = 贝叶斯 + 去噪

到目前为止,笔者给出了生成扩散模型DDPM的两种推导,分别是《生成扩散模型漫谈(一):DDPM = 拆楼 + 建楼》中的通俗类比方案和《生成扩散模型漫谈(二):DDPM = 自回归式VAE》中的变分自编码器方案。两种方案可谓各有特点,前者更为直白易懂,但无法做更多的理论延伸和定量理解,后者理论分析上更加完备一些,但稍显形式化,启发性不足。

 

贝叶斯定理(来自维基百科)

贝叶斯定理(来自维基百科)

 

在这篇文章中,我们再分享DDPM的一种推导,它主要利用到了贝叶斯定理来简化计算,整个过程的“推敲”味道颇浓,很有启发性。不仅如此,它还跟我们后面将要介绍的DDIM模型有着紧密的联系。

模型绘景 #

再次回顾,DDPM建模的是如下变换流程:
\begin{equation}\boldsymbol{x} = \boldsymbol{x}_0 \rightleftharpoons \boldsymbol{x}_1 \rightleftharpoons \boldsymbol{x}_2 \rightleftharpoons \cdots \rightleftharpoons \boldsymbol{x}_{T-1} \rightleftharpoons \boldsymbol{x}_T = \boldsymbol{z}\end{equation}
其中,正向就是将样本数据$\boldsymbol{x}$逐渐变为随机噪声$\boldsymbol{z}$的过程,反向就是将随机噪声$\boldsymbol{z}$逐渐变为样本数据$\boldsymbol{x}$的过程,反向过程就是我们希望得到的“生成模型”。

正向过程很简单,每一步是
\begin{equation}\boldsymbol{x}_t = \alpha_t \boldsymbol{x}_{t-1} + \beta_t \boldsymbol{\varepsilon}_t,\quad \boldsymbol{\varepsilon}_t\sim\mathcal{N}(\boldsymbol{0}, \boldsymbol{I})\end{equation}
或者写成$p(\boldsymbol{x}_t|\boldsymbol{x}_{t-1})=\mathcal{N}(\boldsymbol{x}_t;\alpha_t \boldsymbol{x}_{t-1},\beta_t^2 \boldsymbol{I})$。在约束$\alpha_t^2 + \beta_t^2 = 1$之下,我们有
\begin{equation}\begin{aligned}
\boldsymbol{x}_t =&\, \alpha_t \boldsymbol{x}_{t-1} + \beta_t \boldsymbol{\varepsilon}_t \\
=&\, \alpha_t \big(\alpha_{t-1} \boldsymbol{x}_{t-2} + \beta_{t-1} \boldsymbol{\varepsilon}_{t-1}\big) + \beta_t \boldsymbol{\varepsilon}_t \\
=&\,\cdots\\
=&\,(\alpha_t\cdots\alpha_1) \boldsymbol{x}_0 + \underbrace{(\alpha_t\cdots\alpha_2)\beta_1 \boldsymbol{\varepsilon}_1 + (\alpha_t\cdots\alpha_3)\beta_2 \boldsymbol{\varepsilon}_2 + \cdots + \alpha_t\beta_{t-1} \boldsymbol{\varepsilon}_{t-1} + \beta_t \boldsymbol{\varepsilon}_t}_{\sim \mathcal{N}(\boldsymbol{0}, (1-\alpha_t^2\cdots\alpha_1^2)\boldsymbol{I})}
\end{aligned}\end{equation}
从而可以求出$p(\boldsymbol{x}_t|\boldsymbol{x}_0)=\mathcal{N}(\boldsymbol{x}_t;\bar{\alpha}_t \boldsymbol{x}_0,\bar{\beta}_t^2 \boldsymbol{I})$,其中$\bar{\alpha}_t = \alpha_1\cdots\alpha_t$,而$\bar{\beta}_t = \sqrt{1-\bar{\alpha}_t^2}$。

DDPM要做的事情,就是从上述信息中求出反向过程所需要的$p(\boldsymbol{x}_{t-1}|\boldsymbol{x}_t)$,这样我们就能实现从任意一个$\boldsymbol{x}_T=\boldsymbol{z}$出发,逐步采样出$\boldsymbol{x}_{T-1},\boldsymbol{x}_{T-2},\cdots,\boldsymbol{x}_1$,最后得到随机生成的样本数据$\boldsymbol{x}_0=\boldsymbol{x}$。

请贝叶斯 #

下面我们请出伟大的贝叶斯定理。事实上,直接根据贝叶斯定理我们有
\begin{equation}p(\boldsymbol{x}_{t-1}|\boldsymbol{x}_t) = \frac{p(\boldsymbol{x}_t|\boldsymbol{x}_{t-1})p(\boldsymbol{x}_{t-1})}{p(\boldsymbol{x}_t)}\label{eq:bayes}\end{equation}
然而,我们并不知道$p(\boldsymbol{x}_{t-1}),p(\boldsymbol{x}_t)$的表达式,所以此路不通。但我们可以退而求其次,在给定$\boldsymbol{x}_0$的条件下使用贝叶斯定理:
\begin{equation}p(\boldsymbol{x}_{t-1}|\boldsymbol{x}_t, \boldsymbol{x}_0) = \frac{p(\boldsymbol{x}_t|\boldsymbol{x}_{t-1})p(\boldsymbol{x}_{t-1}|\boldsymbol{x}_0)}{p(\boldsymbol{x}_t|\boldsymbol{x}_0)}\end{equation}
这样修改自然是因为$p(\boldsymbol{x}_t|\boldsymbol{x}_{t-1}),p(\boldsymbol{x}_{t-1}|\boldsymbol{x}_0),p(\boldsymbol{x}_t|\boldsymbol{x}_0)$都是已知的,所以上式是可计算的,代入各自的表达式得到:
\begin{equation}p(\boldsymbol{x}_{t-1}|\boldsymbol{x}_t, \boldsymbol{x}_0) = \mathcal{N}\left(\boldsymbol{x}_{t-1};\frac{\alpha_t\bar{\beta}_{t-1}^2}{\bar{\beta}_t^2}\boldsymbol{x}_t + \frac{\bar{\alpha}_{t-1}\beta_t^2}{\bar{\beta}_t^2}\boldsymbol{x}_0,\frac{\bar{\beta}_{t-1}^2\beta_t^2}{\bar{\beta}_t^2} \boldsymbol{I}\right)\label{eq:p-xt-x0}\end{equation}

推导:上式的推导过程并不难,就是常规的展开整理而已,当然我们也可以找点技巧加快计算。首先,代入各自的表达式,可以发现指数部分除掉$-1/2$因子外,结果是:
\begin{equation}\frac{\Vert \boldsymbol{x}_t - \alpha_t \boldsymbol{x}_{t-1}\Vert^2}{\beta_t^2} + \frac{\Vert \boldsymbol{x}_{t-1} - \bar{\alpha}_{t-1}\boldsymbol{x}_0\Vert^2}{\bar{\beta}_{t-1}^2} - \frac{\Vert \boldsymbol{x}_t - \bar{\alpha}_t \boldsymbol{x}_0\Vert^2}{\bar{\beta}_t^2}\end{equation}
它关于$\boldsymbol{x}_{t-1}$是二次的,因此最终的分布必然也是正态分布,我们只需要求出其均值和协方差。不难看出,展开式中$\Vert \boldsymbol{x}_{t-1}\Vert^2$项的系数是
\begin{equation}\frac{\alpha_t^2}{\beta_t^2} + \frac{1}{\bar{\beta}_{t-1}^2} = \frac{\alpha_t^2\bar{\beta}_{t-1}^2 + \beta_t^2}{\bar{\beta}_{t-1}^2 \beta_t^2} = \frac{\alpha_t^2(1-\bar{\alpha}_{t-1}^2) + \beta_t^2}{\bar{\beta}_{t-1}^2 \beta_t^2} = \frac{1-\bar{\alpha}_t^2}{\bar{\beta}_{t-1}^2 \beta_t^2} = \frac{\bar{\beta}_t^2}{\bar{\beta}_{t-1}^2 \beta_t^2}\end{equation}
所以整理好的结果必然是$\frac{\bar{\beta}_t^2}{\bar{\beta}_{t-1}^2 \beta_t^2}\Vert \boldsymbol{x}_{t-1} - \tilde{\boldsymbol{\mu}}(\boldsymbol{x}_t, \boldsymbol{x}_0)\Vert^2$的形式,这意味着协方差矩阵是$\frac{\bar{\beta}_{t-1}^2 \beta_t^2}{\bar{\beta}_t^2}\boldsymbol{I}$。另一边,把一次项系数拿出来是$-2\left(\frac{\alpha_t}{\beta_t^2}\boldsymbol{x}_t + \frac{\bar{\alpha}_{t-1}}{\bar{\beta}_{t-1}^2}\boldsymbol{x}_0 \right)$,除以$\frac{-2\bar{\beta}_t^2}{\bar{\beta}_{t-1}^2 \beta_t^2}$后便可以得到
\begin{equation}\tilde{\boldsymbol{\mu}}(\boldsymbol{x}_t, \boldsymbol{x}_0)=\frac{\alpha_t\bar{\beta}_{t-1}^2}{\bar{\beta}_t^2}\boldsymbol{x}_t + \frac{\bar{\alpha}_{t-1}\beta_t^2}{\bar{\beta}_t^2}\boldsymbol{x}_0 \end{equation}
这就得到了$p(\boldsymbol{x}_{t-1}|\boldsymbol{x}_t, \boldsymbol{x}_0)$的所有信息了,结果正是式$\eqref{eq:p-xt-x0}$。

去噪过程 #

现在我们得到了$p(\boldsymbol{x}_{t-1}|\boldsymbol{x}_t, \boldsymbol{x}_0)$,它有显式的解,但并非我们想要的最终答案,因为我们只想通过$\boldsymbol{x}_t$来预测$\boldsymbol{x}_{t-1}$,而不能依赖$\boldsymbol{x}_0$,$\boldsymbol{x}_0$是我们最终想要生成的结果。接下来,一个“异想天开”的想法是

如果我们能够通过$\boldsymbol{x}_t$来预测$\boldsymbol{x}_0$,那么不就可以消去$p(\boldsymbol{x}_{t-1}|\boldsymbol{x}_t, \boldsymbol{x}_0)$中的$\boldsymbol{x}_0$,使得它只依赖于$\boldsymbol{x}_t$了吗?

说干就干,我们用$\bar{\boldsymbol{\mu}}(\boldsymbol{x}_t)$来预估$\boldsymbol{x}_0$,损失函数为$\Vert \boldsymbol{x}_0 - \bar{\boldsymbol{\mu}}(\boldsymbol{x}_t)\Vert^2$。训练完成后,我们就认为
\begin{equation}p(\boldsymbol{x}_{t-1}|\boldsymbol{x}_t) \approx p(\boldsymbol{x}_{t-1}|\boldsymbol{x}_t, \boldsymbol{x}_0=\bar{\boldsymbol{\mu}}(\boldsymbol{x}_t)) = \mathcal{N}\left(\boldsymbol{x}_{t-1}; \frac{\alpha_t\bar{\beta}_{t-1}^2}{\bar{\beta}_t^2}\boldsymbol{x}_t + \frac{\bar{\alpha}_{t-1}\beta_t^2}{\bar{\beta}_t^2}\bar{\boldsymbol{\mu}}(\boldsymbol{x}_t),\frac{\bar{\beta}_{t-1}^2\beta_t^2}{\bar{\beta}_t^2} \boldsymbol{I}\right)\label{eq:p-xt}\end{equation}
在$\Vert \boldsymbol{x}_0 - \bar{\boldsymbol{\mu}}(\boldsymbol{x}_t)\Vert^2$中,$\boldsymbol{x}_0$代表原始数据,$\boldsymbol{x}_t$代表带噪数据,所以这实际上在训练一个去噪模型,这也就是DDPM的第一个“D”的含义(Denoising)。

具体来说,$p(\boldsymbol{x}_t|\boldsymbol{x}_0)=\mathcal{N}(\boldsymbol{x}_t;\bar{\alpha}_t \boldsymbol{x}_0,\bar{\beta}_t^2 \boldsymbol{I})$意味着$\boldsymbol{x}_t = \bar{\alpha}_t \boldsymbol{x}_0 + \bar{\beta}_t \boldsymbol{\varepsilon},\boldsymbol{\varepsilon}\sim\mathcal{N}(\boldsymbol{0}, \boldsymbol{I})$,或者写成$\boldsymbol{x}_0 = \frac{1}{\bar{\alpha}_t}\left(\boldsymbol{x}_t - \bar{\beta}_t \boldsymbol{\varepsilon}\right)$,这启发我们将$\bar{\boldsymbol{\mu}}(\boldsymbol{x}_t)$参数化为
\begin{equation}\bar{\boldsymbol{\mu}}(\boldsymbol{x}_t) = \frac{1}{\bar{\alpha}_t}\left(\boldsymbol{x}_t - \bar{\beta}_t \boldsymbol{\epsilon}_{\boldsymbol{\theta}}(\boldsymbol{x}_t, t)\right)\label{eq:bar-mu}\end{equation}
此时损失函数变为
\begin{equation}\Vert \boldsymbol{x}_0 - \bar{\boldsymbol{\mu}}(\boldsymbol{x}_t)\Vert^2 = \frac{\bar{\beta}_t^2}{\bar{\alpha}_t^2}\left\Vert\boldsymbol{\varepsilon} - \boldsymbol{\epsilon}_{\boldsymbol{\theta}}(\bar{\alpha}_t \boldsymbol{x}_0 + \bar{\beta}_t \boldsymbol{\varepsilon}, t)\right\Vert^2\end{equation}
省去前面的系数,就得到DDPM原论文所用的损失函数了。可以发现,本文是直接得出了从$\boldsymbol{x}_t$到$\boldsymbol{x}_0$的去噪过程,而不是像之前两篇文章那样,通过$\boldsymbol{x}_t$到$\boldsymbol{x}_{t-1}$的去噪过程再加上积分变换来推导,相比之下本文的推导可谓更加一步到位了。

另一边,我们将式$\eqref{eq:bar-mu}$代入到式$\eqref{eq:p-xt}$中,化简得到
\begin{equation}
p(\boldsymbol{x}_{t-1}|\boldsymbol{x}_t) \approx p(\boldsymbol{x}_{t-1}|\boldsymbol{x}_t, \boldsymbol{x}_0=\bar{\boldsymbol{\mu}}(\boldsymbol{x}_t)) = \mathcal{N}\left(\boldsymbol{x}_{t-1}; \frac{1}{\alpha_t}\left(\boldsymbol{x}_t - \frac{\beta_t^2}{\bar{\beta}_t}\boldsymbol{\epsilon}_{\boldsymbol{\theta}}(\boldsymbol{x}_t, t)\right),\frac{\bar{\beta}_{t-1}^2\beta_t^2}{\bar{\beta}_t^2} \boldsymbol{I}\right)\end{equation}
这就是反向的采样过程所用的分布,连同采样过程所用的方差也一并确定下来了。至此,DDPM推导完毕~提示:出于推导的流畅性考虑,本文的$\boldsymbol{\epsilon}_{\boldsymbol{\theta}}$跟前两篇介绍不一样,反而跟DDPM原论文一致。)

推导:将式$\eqref{eq:bar-mu}$代入到式$\eqref{eq:p-xt}$的主要化简难度就是计算
\begin{equation}\begin{aligned}\frac{\alpha_t\bar{\beta}_{t-1}^2}{\bar{\beta}_t^2} + \frac{\bar{\alpha}_{t-1}\beta_t^2}{\bar{\alpha}_t\bar{\beta}_t^2} =&\, \frac{\alpha_t\bar{\beta}_{t-1}^2 + \beta_t^2/\alpha_t}{\bar{\beta}_t^2} = \frac{\alpha_t^2(1-\bar{\alpha}_{t-1}^2) + \beta_t^2}{\alpha_t\bar{\beta}_t^2} = \frac{1-\bar{\alpha}_t^2}{\alpha_t\bar{\beta}_t^2} = \frac{1}{\alpha_t}
\end{aligned}\end{equation}

预估修正 #

不知道读者有没有留意到一个有趣的地方:我们要做的事情,就是想将$\boldsymbol{x}_T$慢慢地变为$\boldsymbol{x}_0$,而我们在借用$p(\boldsymbol{x}_{t-1}|\boldsymbol{x}_t, \boldsymbol{x}_0)$近似$p(\boldsymbol{x}_{t-1}|\boldsymbol{x}_t)$时,却包含了“用$\bar{\boldsymbol{\mu}}(\boldsymbol{x}_t)$来预估$\boldsymbol{x}_0$”这一步,要是能预估准的话,那就直接一步到位了,还需要逐步采样吗?

真实情况是,“用$\bar{\boldsymbol{\mu}}(\boldsymbol{x}_t)$来预估$\boldsymbol{x}_0$”当然不会太准的,至少开始的相当多步内不会太准。它仅仅起到了一个前瞻性的预估作用,然后我们只用$p(\boldsymbol{x}_{t-1}|\boldsymbol{x}_t)$来推进一小步,这就是很多数值算法中的“预估-修正”思想,即我们用一个粗糙的解往前推很多步,然后利用这个粗糙的结果将最终结果推进一小步,以此来逐步获得更为精细的解。

由此我们还可以联想到Hinton三年前提出的《Lookahead Optimizer: k steps forward, 1 step back》,它同样也包含了预估(k steps forward)和修正(1 step back)两部分,原论文将其诠释为“快(Fast)-慢(Slow)”权重的相互结合,快权重就是预估得到的结果,慢权重则是基于预估所做的修正结果。如果愿意,我们也可以用同样的方式去诠释DDPM的“预估-修正”过程~

遗留问题 #

最后,在使用贝叶斯定理一节中,我们说式$\eqref{eq:bayes}$没法直接用的原因是$p(\boldsymbol{x}_{t-1})$和$p(\boldsymbol{x}_t)$均不知道。因为根据定义,我们有
\begin{equation}p(\boldsymbol{x}_t) = \int p(\boldsymbol{x}_t|\boldsymbol{x}_0)\tilde{p}(\boldsymbol{x}_0)d\boldsymbol{x}_0\end{equation}
其中$p(\boldsymbol{x}_t|\boldsymbol{x}_0)$是知道的,而数据分布$\tilde{p}(\boldsymbol{x}_0)$无法提前预知,所以不能进行计算。不过,有两个特殊的例子,是可以直接将两者算出来的,这里我们也补充计算一下,其结果也正好是上一篇文章遗留的方差选取问题的答案。

第一个例子是整个数据集只有一个样本,不失一般性,假设该样本为$\boldsymbol{0}$,此时$\tilde{p}(\boldsymbol{x}_0)$为狄拉克分布$\delta(\boldsymbol{x}_0)$,可以直接算出$p(\boldsymbol{x}_t)=p(\boldsymbol{x}_t|\boldsymbol{0})$。继而代入式$\eqref{eq:bayes}$,可以发现结果正好是$p(\boldsymbol{x}_{t-1}|\boldsymbol{x}_t,\boldsymbol{x}_0)$取$\boldsymbol{x}_0=\boldsymbol{0}$的特例,即
\begin{equation}p(\boldsymbol{x}_{t-1}|\boldsymbol{x}_t) = p(\boldsymbol{x}_{t-1}|\boldsymbol{x}_t, \boldsymbol{x}_0=\boldsymbol{0}) = \mathcal{N}\left(\boldsymbol{x}_{t-1};\frac{\alpha_t\bar{\beta}_{t-1}^2}{\bar{\beta}_t^2}\boldsymbol{x}_t,\frac{\bar{\beta}_{t-1}^2\beta_t^2}{\bar{\beta}_t^2} \boldsymbol{I}\right)\end{equation}
我们主要关心其方差为$\frac{\bar{\beta}_{t-1}^2\beta_t^2}{\bar{\beta}_t^2}$,这便是采样方差的选择之一。

第二个例子是数据集服从标准正态分布,即$\tilde{p}(\boldsymbol{x}_0)=\mathcal{N}(\boldsymbol{x}_0;\boldsymbol{0},\boldsymbol{I})$。前面我们说了$p(\boldsymbol{x}_t|\boldsymbol{x}_0)=\mathcal{N}(\boldsymbol{x}_t;\bar{\alpha}_t \boldsymbol{x}_0,\bar{\beta}_t^2 \boldsymbol{I})$意味着$\boldsymbol{x}_t = \bar{\alpha}_t \boldsymbol{x}_0 + \bar{\beta}_t \boldsymbol{\varepsilon},\boldsymbol{\varepsilon}\sim\mathcal{N}(\boldsymbol{0}, \boldsymbol{I})$,而此时根据假设还有$\boldsymbol{x}_0\sim\mathcal{N}(\boldsymbol{0}, \boldsymbol{I})$,所以由正态分布的叠加性,$\boldsymbol{x}_t$正好也服从标准正态分布。将标准正态分布的概率密度代入式$\eqref{eq:bayes}$后,结果的指数部分除掉$-1/2$因子外,结果是:
\begin{equation}\frac{\Vert \boldsymbol{x}_t - \alpha_t \boldsymbol{x}_{t-1}\Vert^2}{\beta_t^2} + \Vert \boldsymbol{x}_{t-1}\Vert^2 - \Vert \boldsymbol{x}_t\Vert^2\end{equation}
跟推导$p(\boldsymbol{x}_{t-1}|\boldsymbol{x}_t,\boldsymbol{x}_0)$的过程类似,可以得到上述指数对应于
\begin{equation}p(\boldsymbol{x}_{t-1}|\boldsymbol{x}_t) = \mathcal{N}\left(\boldsymbol{x}_{t-1};\alpha_t\boldsymbol{x}_t,\beta_t^2 \boldsymbol{I}\right)\end{equation}
我们同样主要关心其方差为$\beta_t^2$,这便是采样方差的另一个选择。

文章小结 #

本文分享了DDPM的一种颇有“推敲”味道的推导,它借助贝叶斯定理来直接推导反向的生成过程,相比之前的“拆楼-建楼”类比和变分推断理解更加一步到位。同时,它也更具启发性,跟接下来要介绍的DDIM有很密切的联系。

转载到请包括本文地址:https://spaces.ac.cn/archives/9164

更详细的转载事宜请参考:《科学空间FAQ》

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/740721.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

ComfyUI进阶篇:ComfyUI核心节点(四)

ComfyUI核心节点(四) 前言: 学习ComfyUI是一场持久战。当你掌握了ComfyUI的安装和运行之后,会发现大量五花八门的节点。面对各种各样的工作流和复杂的节点种类,可能会让人感到不知所措。在这篇文章中,我们将用通俗易懂的语言对ComfyUI的核心节点进行系统梳理,并详细解释…

全网最全EdgeMesh QA手册

https://zhuanlan.zhihu.com/p/585749690全网最全EdgeMesh Q&A手册Poorunga今天摸大鱼 24 人赞同了该文章​目录收起转载请注明出处前言定位模型问题一:Failed to watch xxx: failed to list xxx: no kind xxx ; Reflector ListAndWatch xxx (total time 10003ms)问题二:…

.NetCore中EFCore for MySql整理MySql.EntityFrameworkCore

一、MySql.EntityFrameworkCore 这个是官方给的一个EF操作MySql数据库的框架。 使用方法跟EF for SqlServer 一样。二、安装命令NuGet\Install-Package MySql.EntityFrameworkCore -Version 8.0.5 项目依赖 安装后的结果: 三、 EF Code First 模式连接数据库更多: C#程序调…

Caterpillar on a Tree

首先一个很显然的地方就是使用传送门肯定是在叶子节点使用,我们来考虑一下整个过程是怎么样的 为了方便,我们不妨假设可以传送回根节点\(k+1\)次,然后要求最后回到根节点 我们先从根节点走到某一个叶子结点,然后再从这个叶子节点走到另一个叶子节点,然后继续走到另一个叶子…

Linux-网络安全私房菜

前言本文章仅仅是我个人学习过程中,觉得会在安全领域用的比较多的命令,也有一些本散修在Linux入门学习中的一些命令与总结心得。道友们可参考一二我的修炼心得,切勿无脑修炼,适合自己的才是最好。目录前言入门基本指令篇章man帮助手册字符集设置cdlsdatemkdirtouch-d-m修改…

Linux应急响应——知攻善防应急靶场-Linux(1)

Linux应急响应靶机 1前景需要:小王急匆匆地找到小张,小王说"李哥,我dev服务器被黑了",快救救我!!挑战内容:黑客的IP地址遗留下的三个flag目录查看history历史指令查看开机自启动项异常连接和端口异常进程定时任务异常服务日志分析账户排查总结 靶场出处是知攻善…

RockyLinux9.4升级Linux内核6.X️

RockyLinux9.4升级Linux内核6.X🌶️ 原文连接:https://rockylinux.cn/notes/rocky-linux-9-nei-he-sheng-ji-zhi-6.html 查看当前内核版本[root@localhost ~]# uname -aLinux iZ2zeaytpwetf58zk3e21dZ 5.14.0-427.18.1.el9_4.x86_64 #1 SMP PREEMPT_DYNAMIC Mon May 27 16:…

网络安全--计算机网络安全概述

那么问题就来了,如果我的访问控制权限被高级别的权限回收了,那么我不作限制那么对方依旧会拥有我分配给他的权限,这就是为什么在数据库中会有级联删除,级联权限,需要工作人员做分配设置。保证用户的信息完整性,就是不允许非信息拥有者篡改其他人的信息,因为拥有者所拥有…

SQL注入方法

记录一些注入思路和经常使用的工具,后续有用到新的工具和总结新的方法再继续补充。目录前言如何测试与利用注入点手工注入思路工具sqlmap-r-u-m--level--risk-v-p--threads-batch-smart--os-shell--mobiletamper插件获取数据的相关参数 前言记录一些注入思路和经常使用的工具,…

腾讯云COS插件入驻Discuz!x

Discuz! 平台,由一群高擎互联网人在倾情支持, 他们来自于腾讯Discuz! 创业团队成员以及优秀的开发者。在中国互联网风云变迁中,Discuz! 20多年间为300万企业及站长赋能,秉承“开放、连接、共赢”的精神,倡导与生态伙伴及开发者共建健康可持续的Discuz!品牌合作模式,突破以…

推出支持第五代CAPSENSE™技术的PSoC™ 车规级4100S Max系列(CY8C4147AZS、CY8C4148AZA),适用于人机交互应用的需求

PSoC™ 车规级4100S Max系列产品带有扩展的闪存器件与通用输入/输出接口(GPIO),支持第五代CAPSENSE™电容和电感式触摸感应技术,能够满足新一代人机交互(HMI)应用的需求。全新的PSoC™ 4100S Max系列产品带有扩展的闪存器件与通用输入/输出接口(GPIO),支持第五代CAPSE…

在idea中创建第一个项目

1.为了方便后续学习管理,从file->new->project->empty project创建空白项目,我取名为JavaSE (* idea的版本不同,空白项目的位置也有所不同,我使用的是2024.1.4) 2.新建模块,file->new->module,出现窗口后选中最上面的java,名字取了basic grammar 3.由于…