2024-三叶草安全技术小组第十五届极客大挑战 wp

news/2024/11/7 2:20:24/文章来源:https://www.cnblogs.com/x1aOha0/p/18524150

Crypto

1.凯撒加密

YEI{CKRIUSK_ZU_2024_MKKQ_INGRRKTMK}
6位
SYC{WELCOME_TO_2024_GEEK_CHALLENGE}

2.RSA

原文:

from Crypto.Util.number import bytes_to_long, getPrime
from secret import flag
p = getPrime(128)
q = getPrime(128)
n = p*q
e = 65537
m = bytes_to_long(flag)
c = pow(m, e, n)
print(f"n = {n}")
print(f"p = {p}")
print(f"q = {q}")
print(f"c = {c}")'''
n = 33108009203593648507706487693709965711774665216872550007309537128959455938833
p = 192173332221883349384646293941837353967
q = 172282016556631997385463935089230918399
c = 5366332878961364744687912786162467698377615956518615197391990327680664213847
'''

经典的RSA,已知p,q,e,c
exp:

import gmpy2
import libnum
from Crypto.Util.number import *
n = 33108009203593648507706487693709965711774665216872550007309537128959455938833
p = 192173332221883349384646293941837353967
q = 172282016556631997385463935089230918399
c = 5366332878961364744687912786162467698377615956518615197391990327680664213847
e = 65537
n = p * q
phi = (p - 1) * (q - 1)
d = gmpy2.invert(e, phi)
m = pow(c, d, n)
print(libnum.n2s(int(m)))
#b'SYC{RSA_is_easy}'

3.不是套娃

实际上是个套娃题

第一层:


看一下txt

-..-/../-./..--.-/.---/../..--.-/--../../..--.-/.--/.-/..--.-/-.--/../..--.-/--../../..--.-/--/---/..--.-/-.--/../..--.-/-../..-/.-/..--.-/--../..

摩斯密码
解密有

XIN_JI_ZI_WA_YI_ZI_MO_YI_DUA_ZI

再根据标题key=lower(key)意思是大写转小写

xin_ji_zi_wa_yi_zi_mo_yi_dua_zi

第二层:

image

看到类似维吉尼亚的名称,猜测是维吉尼亚加密

key <- commanderKEY = uizrlbzii+        +        +        +        +        +        +        +        +        +
uizrlbzii Rsm    o                       o                       o  Bcynirv
+        +        +        +        +        +        +        +        +        +
uizrlbzii
+        +        +        +        +        +        +        +        +        +
uizrlbzii Rsm
+        +        +        +        +        +        +        +        +        +
uizrlbzii Rsm
+        +        +        +        +        +        +        +        +        +
uizrlbzii
+        +        +        +        +        +        +        +        +        +
uizrlbzii Rsm             o                       o  Yoxx-nhw        o Bcynirv
+        +        +        +        +        +        +        +        +        +

刚开始还没看懂,然后不知不觉就捣鼓出来了
image
密码是

sunflower

第三层:

image
文档里给出了加密代码

a1fdbce928af7aae

疑似MD5,丢去解密
image
密码:

HaiKav

第四层

image

文档里:

NEFICPIC&CRTCTNEYO

你猜这是什么,根据标题,我猜是三个10进制=60进制?
好家伙,整了半天,是栅栏密码.......
image
密码:

NICECTF&NICECRYPTO

image
image
根据提示解密即可
解得:

原神,启动!

最后一层:

打开就是flag

SYC{H0W_P3RF3C+_YU0_AR3!}

4.共模攻击

原文:

from Crypto.Util.number import *
from secret import flag
p,q = [getPrime(1024) for _ in range(2)] 
n = p*q
e = [getPrime(10) for _ in range(2)]m = bytes_to_long(flag)c = [pow(m, e[i], n) for i in range(2)]
print(f'n = {n}')
print(f'e1 = {e[0]}')
print(f'e2 = {e[1]}')
print(f'c1 = {c[0]}')
print(f'c2 = {c[1]}')
'''
n = 19742875423645690846073637620470497648804310111201409901059297083827103813674034450200432098143959078292346910591785265323563248781526393718834491458926162514713269984791730816121181307827624489725923763353393879316510062227511469438742429290073999388690825732236465647396755899136346150862848924231619666069528077790933176798057396704758072769660663756346237040909579775389576227450505746914753205890194457812893098491264392293949768193694560954874603451253079446652049592976605414438411872223250039782381259212718733455588477129910357095186014496957765297934289263536712574572533650393220492870445376144568199077767
e1 = 911
e2 = 967
c1 = 18676091924461946809127036439355116782539894105245796626898495935702348484076501694838877829307466429933623102626122909782775514926293363853121828819237500456062111805212209491398720528499589486241208820804465599279152640624618194425740368495072591471531868392274503936869225072123214869399971636428177516761675388589238329574042518038702529606188240859751459632643230538522947412931990009143731829484941397093509641320264169403755707495153433568106934850283614529793695266717330769019091782929139589939928210818515744604847453929432990185347112319971445630830477574679898503825626294542336195240055995445217249602983
c2 = 4229417863231092939788858229435938841085459330992709019823280977891432565586698228613770964563920779991584732527715378842621171338649745186081520176123907689669636473919678398014317024138622949923292787095400632018991311254591786179660603414693984024161009444842277220189315861986306573182865656366278782315864366857374874763243428496061153290565891942968876789905670073321426112497113145141539289020571684634406829272902118484670099097148727072718299512735637087933649345419433312872607209633402427461708181971718804026293074540519907755129917132236240606834816534369171888633588190859475764799895410284484045429152
'''

exp:

import gmpy2
import libnum
n = 19742875423645690846073637620470497648804310111201409901059297083827103813674034450200432098143959078292346910591785265323563248781526393718834491458926162514713269984791730816121181307827624489725923763353393879316510062227511469438742429290073999388690825732236465647396755899136346150862848924231619666069528077790933176798057396704758072769660663756346237040909579775389576227450505746914753205890194457812893098491264392293949768193694560954874603451253079446652049592976605414438411872223250039782381259212718733455588477129910357095186014496957765297934289263536712574572533650393220492870445376144568199077767
e1 = 911
e2 = 967
c1 = 18676091924461946809127036439355116782539894105245796626898495935702348484076501694838877829307466429933623102626122909782775514926293363853121828819237500456062111805212209491398720528499589486241208820804465599279152640624618194425740368495072591471531868392274503936869225072123214869399971636428177516761675388589238329574042518038702529606188240859751459632643230538522947412931990009143731829484941397093509641320264169403755707495153433568106934850283614529793695266717330769019091782929139589939928210818515744604847453929432990185347112319971445630830477574679898503825626294542336195240055995445217249602983
c2 = 4229417863231092939788858229435938841085459330992709019823280977891432565586698228613770964563920779991584732527715378842621171338649745186081520176123907689669636473919678398014317024138622949923292787095400632018991311254591786179660603414693984024161009444842277220189315861986306573182865656366278782315864366857374874763243428496061153290565891942968876789905670073321426112497113145141539289020571684634406829272902118484670099097148727072718299512735637087933649345419433312872607209633402427461708181971718804026293074540519907755129917132236240606834816534369171888633588190859475764799895410284484045429152
s,s1,s2=gmpy2.gcdext(e1,e2)
m=(pow(c1,s1,n)*pow(c2,s2,n))%n 
print(libnum.n2s(int(m)).decode())
#SYC{U_can_really_attack}

5.XOR

原文:

from Crypto.Util.number import *
from pwn import xorkey = b'...'
flag = b'...'
assert len(key)==4enc = bytes_to_long(xor(flag,key))f1 = 4585958212176920650644941909171976689111990
f2 = 3062959364761961602614252587049328627114908
e1 = enc^f1
e2 = e1^f2
print(e2)"""
10706859949950921239354880312196039515724907
"""

两个xor,注意python只能异或数,Pwn的异或可以异或字符串
我给出的方法是爆破,范围再可打印的ASCII码

exp:

from Crypto.Util.number import *
from itertools import *
f1 = 4585958212176920650644941909171976689111990
f2 = 3062959364761961602614252587049328627114908
e2=10706859949950921239354880312196039515724907
e1=e2^f2
enc=e1^f1
#print(enc)
# #9529760761659260504037024859162256546622529
enc = b'mes)_c@3LHobXchblA'
for key in product(range(32, 127), repeat=4):key_bytes = bytes(key)try:flag = bytes([b ^ key_bytes[i % 4] for i, b in enumerate(enc)])if b'SYC{' in flag:print(flag)except IndexError:continue
#'SYC{a_part_0f_X0R}'#实际上下面这种方法可以快速求出key,感谢大佬的指点.
'''
from Crypto.Util.number import *
from pwn import xor
f1 = 4585958212176920650644941909171976689111990
f2 = 3062959364761961602614252587049328627114908
c=10706859949950921239354880312196039515724907
enc=long_to_bytes(c^f2^f1)
print(enc)
key=xor(b'SYC{',enc[:4])
print(key)
'''

6.dp

经典的dp泄露

原文:

from Crypto.Util.number import getPrime,bytes_to_longp,q = getPrime(512),getPrime(512)
n = p * q
e = 65537
d = pow(e,-1,(p-1) * (q-1))
dp = d % (p-1)
m = bytes_to_long(flag)
c = pow(m, e, n)print("c = ",c)
print("n = ",n)
print("e = ",e)
print("dp = ",dp)'''
c =  127916287434936224964530288403657504450134210781148845328357237956681373722556447001247137686758965891751380034827824922625307521221598031789165449134994998397717982461775225812413476283147124013667777578827293691666320739053915493782515447112364470583788127477537555786778672970196314874316507098162498135060
n =  157667866005866043809675592336288962106125998780791920007920833145068421861029354497045918471672956655205541928071253023208751202980457919399456984628429198438149779785543371372206661553180051432786094530268099696823142821724314197245158942206348670703497441629288741715352106143317909146546420870645633338871
e =  65537
dp =  2509050304161548479367108202753097217949816106531036020623500808413533337006939302155166063392071003278307018323129989037561756887882853296553118973548769
'''

exp:

import gmpy2 as gp
c =  127916287434936224964530288403657504450134210781148845328357237956681373722556447001247137686758965891751380034827824922625307521221598031789165449134994998397717982461775225812413476283147124013667777578827293691666320739053915493782515447112364470583788127477537555786778672970196314874316507098162498135060
n =  157667866005866043809675592336288962106125998780791920007920833145068421861029354497045918471672956655205541928071253023208751202980457919399456984628429198438149779785543371372206661553180051432786094530268099696823142821724314197245158942206348670703497441629288741715352106143317909146546420870645633338871
e =  65537
dp =  2509050304161548479367108202753097217949816106531036020623500808413533337006939302155166063392071003278307018323129989037561756887882853296553118973548769
for i in range(1,e):if(dp*e-1)%i == 0:if n%(((dp*e-1)//i)+1) == 0:p=((dp*e-1)//i)+1q=n//(((dp*e-1)//i)+1)phi=(q-1)*(p-1)d=gp.invert(e,phi)m=pow(c,d,n)
print(m)
print(bytes.fromhex(hex(m)[2:]))
#SYC{welcome_to_crypto}

7.ezRSA

题目描述:coppersmith

原文:

from Crypto.Util.number import *
from secret import flag
m = bytes_to_long(flag)
assert m.bit_length()<500
p = getPrime(512)
q = getPrime(512)
n = p*q
e = 3
c = pow(m, e, n)
bits = 150
m = (m >> bits) << bits
h = (2024*m-2023) % n
print('n =',n)
print('c =',c)
print('h =',h)'''
n = 98776098002891477120992675696155328927086322526307976337988006606436135336004472363084175941067711391936982491358233723506086793155908108571814951698009309071244571404116817767749308434991695075517682979438837852005396491907180020541510210086588426719828012276157990720969176680296088209573781988504138607511
c = 9379399412697943604731810117788765980709097637865795846842608472521416662350816995261599566999896411508374352899659705171307916591351157861393506101348972544843696221631571188094524310759046142743046919075577350821523746192424192386688583922197969461446371843309934880019670502610876840610213491163201385965
h = 111518648179416351438603824560360041496706848494616308866057817087295675324528913254309319829895222661760009533326673551072163865
'''

根据题目描述是coppersmith,所以为coppersmith攻击

Coppersmith 可以用于求多项式的小根,经常用于 RSA 攻击中“已知某些二进制位,求剩余位”这一类问题。

具体详情可以查看:大佬的文章

exp:

from Crypto.Util.number import *
def extended_euclidean(a, b):if a == 0:return b, 0, 1else:gcd, x, y = extended_euclidean(b % a, a)return gcd, y - (b // a) * x, x
def mod_inverse(a, m):gcd, x, _ = extended_euclidean(a, m)if gcd != 1:return None  # 如果a和m不互质,则没有逆元else:return x % m# 给定的值
n = 98776098002891477120992675696155328927086322526307976337988006606436135336004472363084175941067711391936982491358233723506086793155908108571814951698009309071244571404116817767749308434991695075517682979438837852005396491907180020541510210086588426719828012276157990720969176680296088209573781988504138607511
h = 111518648179416351438603824560360041496706848494616308866057817087295675324528913254309319829895222661760009533326673551072163865
# 计算2024模n的逆元
inv_2024 = mod_inverse(2024, n)
# 计算m
high_m = (h + 2023) * inv_2024 % n
def phase2(high_m, n, c):R.<x> = PolynomialRing(Zmod(n), implementation='NTL')m = high_m + xM = m((m^3 - c).small_roots()[0])print(long_to_bytes(int(M)))c = 9379399412697943604731810117788765980709097637865795846842608472521416662350816995261599566999896411508374352899659705171307916591351157861393506101348972544843696221631571188094524310759046142743046919075577350821523746192424192386688583922197969461446371843309934880019670502610876840610213491163201385965
phase2(high_m, n, c)
#SYC{crypto_is_very_interesting_why_dont_you_join_us}

8.ecc

原文:

from Crypto.Util.number import *
from secret import flagp = getPrime(256)
a = getPrime(256)
b = getPrime(256)
E = EllipticCurve(GF(p),[a,b])
m = E.random_point()
G = E.random_point()
k = getPrime(256)
K = k * G
r = getPrime(256)
c1 = m + r * K
c2 = r * Gcipher_left = bytes_to_long(flag[:len(flag)//2]) * m[0]
cipher_right = bytes_to_long(flag[len(flag)//2:]) * m[1]print(f"p = {p}")
print(f"a = {a}")
print(f"b = {b}")
print(f"k = {k}")
print(f"E = {E}")
print(f"c1 = {c1}")
print(f"c2 = {c2}")
print(f"cipher_left = {cipher_left}")
print(f"cipher_right = {cipher_right}")
'''
p = 93202687891394085633786409619308940289806301885603002539703165565954917915237
a = 93822086754590882682502837744000915992590989006575416134628106376590825652793
b = 80546187587527518012258369984400999843218609481640396827119274116524742672463
k = 58946963503925758614502522844777257459612909354227999110879446485128547020161
E = Elliptic Curve defined by y^2 = x^3 + 619398863196797048716428124691975702784687120972413594924940810635907737556*x + 80546187587527518012258369984400999843218609481640396827119274116524742672463 over Finite Field of size 93202687891394085633786409619308940289806301885603002539703165565954917915237
c1 = (40485287784577105052142632380297282223290388901294496494726004092953216846111 : 81688798450940847410572480357702533480504451191937977779652402489509511335169 : 1)
c2 = (51588540344302003527882762117190244240363885481651104291377049503085003152858 : 77333747801859674540077067783932976850711668089918703995609977466893496793359 : 1)
cipher_left = 34210996654599605871773958201517275601830496965429751344560373676881990711573
cipher_right = 62166121351090454316858010748966403510891793374784456622783974987056684617905
'''

椭圆曲线加密,直接丢给GPT
复现不出来了,擦

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/826384.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

GPT 1-3 简单介绍

GPT-1 简介 2018年6月,OpenAI公司发表了论文"Improving Language Understanding by Generative Pretraining"(用生成式预训练提高模型的语言理解能力), 推出了具有 1.17亿个参数的GPT-1(Generative Pre-training,生成式预训练)模型。 GPT-1 采用 传统的语言模型方…

基于Java+SpringBoot+Mysql实现的快递柜寄取快递系统功能实现八

三、系统部分功能描述公告信息业务逻辑层Service、快递取出记录信息业务逻辑层Service、预约物品取出信息业务逻辑层Service、短信发送信息业务逻辑层Service、关于我们控制器Controller、后台用户信息控制器Controller、 快递员信息控制器Controller、物品类型控制器Controlle…

转存——Quartus II FPGA程序仿真运行时出现错误“error occurred during modelsim simulation”的解决方法

起因 使用Quartus II软件进行FPGA程序仿真,运行时出现错误“error occurred during modelsim simulation”,上网查询解决方法,找了很久都没找到,最后在一个CSDN博客的评论里找到解决方法。 现将解决方法转存如下。 错误示例解决步骤 1.依次点击simulation,option2.依次点击…

Android Studio启动安卓模拟器失败,出现The emulator process for AVD Medium_Phone_API_35 has terminated.

前言 软件版本已安装的SDK Tools包。Android Studio安装设置Proxy代理问题。可在此处设置代理,可在本窗口的左下角的Check Connection处进行检测链接的有效性。 也可以查看以下地址,设置代理的地址:阿里云Android仓库 清华大学开源软件镜像站模拟器问题如果你在这里运行安卓…

MyBatis-Spring中MyBatis概要流程

一、初始化SqlSessionFactory 核心流程 核心使用到了SqlSessionFactoryBean的afterPropertiesSet、getObject方法 afterPropertiesSet:用于初始化并封装数据 getObject:用于注入DefaultSqlSessionFactory对象到容器中 详情逻辑 一、在将SqlSessionFactoryBean放在IOC容器过程…

DP杂题专练

前言 DP 方面太菜了,要多练习,多思考,多做好题。 摘花生Hello Kitty想摘点花生送给她喜欢的米老鼠。 她来到一片有网格状道路的矩形花生地(如下图),从西北角进去,东南角出来。 地里每个道路的交叉点上都有种着一株花生苗,上面有若干颗花生,经过一株花生苗就能摘走该它上…

基于Axure,对抖音直播,淘宝直播和b站直播的对比分析

设计思路 一、竞品分析 1.竞品选择 淘宝直播,抖音直播,b站直播 2.产品定位对比 2.1搜索指数:从2024年年初到2024年10月底,不难看出抖音直播相较于淘宝和b站直播来说,搜索指数更加的高昂,所带来的流量数据也更多。 抖音直播(绿色线)整体搜索量最高,日均值为2,694,且在…

基于Java+SpringBoot+Mysql实现的快递柜寄取快递系统功能实现七

二、主要技术: 2.1 SpringBoot技术SpringBoot是基于Spring框架的一个开发框架,旨在简化Spring应程序的搭建和开发过程以下是关于SpringBoot技术的一些主要特点和优势: SpringBoot提供了许多自动配置的功能,可以根据的依赖和需要自动配置应程序所需的环境,大大少了开发人员…

学期2024-2025-1 学号20241306 《计算机基础与程序设计》第6周学习总结

学期(如2024-2025-1) 学号(如:20241300) 《计算机基础与程序设计》第X周学习总结 作业信息这个作业属于哪个课程 2024-2025-1-计算机基础与程序设计(https://edu.cnblogs.com/campus/besti/2024-2025-1-CFAP))这个作业要求在哪里 [2024-2025-1计算机基础与程序设计第6周作…

九州信泰杯 第十一届山东省网络安全技能大赛

九州信泰杯 第十一届山东省网络安全技能大赛MISC1.签到这是真签到,下载后即可得到flag2.ezpic打开后,这是一个给了一张图片然后拖到010里面,在末尾找到了一半flag另一半打开打stegsloves通过改变背景颜色然后在里面找到了一个二维码扫码后得到flag的另一半最后拼接flag{cf74…

2024数模b题-问题一思路构建

2024数模b题-问题一思路构建样本量计算根据置信空间的计算公式,逆累积分布函数(ICDF):逆累积分布函数(ICDF)是从累积分布函数的值反推出对应的Z分数。在MATLAB中,norminv 函数就是计算标准正态分布的逆累积分布函数的值我们通过这个公式来得到我们可以得到对于95%置信水平…

数据结构与算法 - 串

KMP字符串匹配算法next数组的计算方法: 看该字符前的字符串的前缀和后缀有多少相同(可以交叉重叠),就让相同的数量值加一即为当前next值。 也可以这样计算:看前一个字符的next值处是否与前一个字符相同,若相同,则当前next值为上一next值加一;若不相同,则查看上一next值…