使用 ollama 在本地试玩 LLM

在 chatGPT 的推动下。LLM 简直火出天际,各行各业都在蹭。听说最近 meta 开源的 llama3 模型可以轻松在普通 PC 上运行,这让我也忍不住来蹭一层。以下是使用 ollama 试玩 llama3 的一些记录。

什么是 llama

LLaMA(Large Language Model Meta AI)是Meta开发的大规模预训练语言模型,基于Transformer架构,具有强大的自然语言处理能力。它在文本生成、问答系统、机器翻译等任务中表现出色。LLaMA模型有多个规模,从几亿到上千亿参数,适用于不同的应用场景。用户可以通过开源平台如Hugging Face获取LLaMA模型,并根据需要进行微调。LLaMA的灵活性和可扩展性使其在自然语言处理领域具有广泛的应用前景。

什么是 ollama

Ollama是一款用于本地安装和管理大规模预训练语言模型的工具。它简化了模型的下载、安装和使用流程,支持多种流行的模型如GPT-4和llama。Ollama通过易于使用的命令行界面和API,帮助用户快速部署和运行自然语言处理任务。它还支持多GPU配置和模型微调,适应各种计算资源和应用需求。总之,Ollama为研究人员和开发者提供了一个高效、灵活的本地化大模型解决方案。

下载 ollama

ollama 官网提供了各种平台的安装包,那么这里选择 windows 系统的。以下是下载地址:https://ollama.com/download

在 windows 上安装

在 windows 上安装那简直太简单了,一路 next 就行了。

安装成功后可以在命令行下执行

ollama -v


如果能成功打印出版本信息,那么说明你安装成功了。

下载模型并运行

安装好 ollama 之后我们需要把训练好的模型拉到本地,然后才能运行它。

查找 模型

ollama 提供了一个页面供用户查询可以使用的开源模型。

https://ollama.com/search?q=&p=1

可以看到主流的开源 LLM 几乎都能找到。什么 llama3 啊,phi3 啊,国产的 qwen2 啊。让我们点击 llama3 看看详情。

里面可以选模型的参数大小。这里我们选 8b 试一下。模型大小是 4.7 GB。复制右上角的命令并在命令行运行:

ollama run llama3:8b

程序会开始下载模型到本地。这里得夸一下,ollama 是不是在国内接了 CDN,这速度杠杆的,直接跑满了我的千兆网络。

对话

下载完成后命令行就会跳转到对话模型,等待你输入问题。随便先来一个吧。
Q:飞机为什么会飞?
A: balabala 一大堆,都是英文。

Q: what is SOLID principle?
A:

总结

到这,我们本地运行大模型基本上是初步成功了。简直超级无敌简单,属于有手就行。问题就是本地限制于PC的性能,回答的速度比较慢,大概一秒2-3个单词。CPU大概吃掉50%。当然如果你有 N 卡可能会好很多。内存倒是还好才吃了300多M。好了,下一次我们来试试 open-webui,把本地的模型搞的跟 chatGPT 一样。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/826443.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

获取绝对路径 【文件找不到】

场景# main.py 部分代码def _run_login_script(self):import subprocess# 定义 tools 目录下 login.py 脚本的路径script_path = os.path.join(os.getcwd(), "tools", "login.py")if "CONDA_DEFAULT_ENV" in os.environ and os.environ["CO…

Motivation Challenge

LightTR: A Lightweight Framework for Federated Trajectory Recovery general的问题,数据来源于边缘设备。无法很好的训练一个最优的模型 框架分散训练的得问题 (边缘设备) 一般来说,这些网络是由一堆时空(ST)块组成的,旨在学习轨迹之间的复杂的时空依赖性。st块包含基…

浅谈Windows下的线程细节

绪论 最近阅读了《windows核心编程》关于线程的章节,原书作者讨论得颇为深入,初读者极易被绕晕,我专门写这篇文章供初读者参考阅读。本文的最后,着重讨论了Windows线程API与c/c++运行时库的注意事项。由于本人水平有限,文章难免有纰漏,还望各位读者指正。 Windows提供的创…

校招回顾 | “青春不散场,梦想正起航”,极限科技(INFINI Labs)亮相湖北工业大学 2025 秋季校园招聘会

10 月 31 日,极限科技(INFINI Labs) 受邀参加 湖北工业大学 2025 届秋季校园招聘会,这不仅是一次与满怀激情的青年学子们的深度碰撞,更是一场关于青春与未来的美好邂逅。让我们一起回顾校招现场的精彩瞬间,重温那些闪耀的时刻。 一、梦想起航,共赴盛宴 怀揣着满满的诚意…

如何用 Spring AI + Ollama 构建生成式 AI 应用

为了构建生成式AI应用,需要完成两个部分:AI大模型服务:有两种方式实现,可以使用大厂的API,也可以自己部署,本文将采用ollama来构建 应用构建:调用AI大模型的能力实现业务逻辑,本文将采用Spring Boot + Spring AI来实现Ollama安装与使用进入官网:https://ollama.com/ ,…

MyBatis-Plus条件构造器:构建安全、高效的数据库查询

MyBatis-Plus 提供了一套强大的条件构造器(Wrapper),用于构建复杂的数据库查询条件。一、关于条件构造器(Wrapper) 1.1 简介 MyBatis-Plus 提供了一套强大的条件构造器(Wrapper),用于构建复杂的数据库查询条件。Wrapper 类允许开发者以链式调用的方式构造查询条件,无需编…

数据结构 - 图之代码实现

图遍历分为深度优先遍历(DFS)和广度优先遍历(BFS),DFS一直往下走直到没路再返回,BFS先走所有路一步。文章还介绍了以邻接矩阵存储无向图的实现方法,包括定义、初始化、获取点数量等操作。书接上回,我们继续来聊聊图的遍历与实现。01、遍历 在图的基本功能中有个很重要的…

CF1554E You

题面题解 注意a[u]是点u位置的a,不是每选一个点然后把非标记个数丢进vector里( 每选择一个点,相当于把相邻的非标记的边标为外向,最后一个点u的外向边个数就是a[u] 又观察发现每种边定向方案都可以构造(拓扑),所以一共有2^(n-1)种方案 设f[k]表示gcd=k,g[k]表示k|gcd,…

汽车虚拟仿真软件有哪些?行业软件大盘点!

汽车虚拟仿真可以大大提高汽车的研发效率和质量,降低成本和风险,增强汽车的竞争力和创新能力。本文将带领大家了解汽车虚拟仿真软件有哪些、汽车虚拟仿真实际应用以及汽车云交互实时渲染平台三个要点。汽车虚拟仿真是指利用计算机技术,根据汽车的设计、制造、测试、运行等各…

《机器学习》 学习记录 - 第四章

第4章 决策树 4.1 基本流程 决策树(decision tree)是一类常见的机器学习方法,也叫“判定树”。顾名思义,决策树是基于树的结构进行决策的。 一般的,一棵决策树包含一个根结点、若干个内部结点和若干个叶结点:叶结点对应于决策结果,其他每个结点则对应于一个属性测试; 每…

Fullcalendar

月光光关注作者注册登录 使用Fullcalendar管理时间计划调度安排月光光2020-01-05 阅读 4 分钟 Fullcalendar可以很好的管理日程安排事件,可以管理时间和任务调度,比如日常值班岗位安排、举办活动会议议程安排、项目行动安排、车间劳动岗位排班等等。今天我们来了解一下使用Fu…

哈希函数与数据完整性 (^=◕ᴥ◕=^)

哈希函数与数据完整性:保护猫咪世界的小鱼干 (^=◕ᴥ◕=^) 在数字世界中,我们总是希望确保传输和存储的数据没有被篡改,就像猫咪们想保护它们珍贵的小鱼干不被“偷吃”一样。为此,哈希函数(Hash Functions)成为了一个强大而可靠的工具。哈希函数能生成独特的数据“指纹”…