mini-lsm通关笔记Week2Day5

news/2024/11/20 21:27:12/文章来源:https://www.cnblogs.com/cnyuyang/p/18559339

项目地址:https://github.com/skyzh/mini-lsm

个人实现地址:https://gitee.com/cnyuyang/mini-lsm

Summary

在本章中,您将:

  • 实现manifest文件的编解码。
  • 系统重启时从manifest文件中恢复。

要将测试用例复制到启动器代码中并运行它们,

cargo x copy-test --week 2 --day 5
cargo x scheck

Task 1-Manifest Encoding

系统使用manifest文件来记录引擎中发生的所有操作。目前只有两种类型:合并和转储SST。当引擎重新启动时,它将读取manifest文件,重建状态,并将磁盘上SST文件加载到内存中。

存储LSM状态的方法有很多。最简单的方法之一是简单地将完整状态存储到JSON文件中。每当我们执行一次合并或转储SST时,我们可以将整个LSM状态序列化到一个文件中。这种方法的问题是,当数据库变得超大(即10k SST)时,将manifest写入磁盘将超级慢。因此,我们将manifest设计为一个追加写的文件。

在此任务中,您需要修改:

src/manifest.rs

我们使用JSON对manifest进行编码。你可以使用serde_json::to_vec将manifest编码为json,并将其写入manifest文件,然后执行fsync。当你从manifest文件读取时,你可以使用serde_json::Deserializer::from_slice,它将返回一个记录流。你不需要存储记录长度等,因为serde_json可以自动找到记录的拆分。

manifest文件格式如下:

| JSON record | JSON record | JSON record | JSON record |

再次注意,我们并没有记录每条记录有多少字节的信息。

在引擎运行几个小时后,manifest文件可能会变得非常大。此时,您可以定期压缩manifest文件以存储当前快照并截断日志。这是您可以作为奖励任务的一部分实现的优化。

serde_json该库可以实现JSON的自动拆分,就是说serde_json::Deserializer::from_slice可以解析如下格式的json文件:

{...
}
{...
}
{...
}

与标准的json数组相比前后不需要[]包裹,中间不需要,分隔。

所有我们实现add_record_when_init函数只需要序列化对象,然后对文件进行追加写操作:

pub fn add_record_when_init(&self, record: ManifestRecord) -> Result<()> {// 获取锁,避免两个线程竞争写入let mut file = self.file.lock();// 将对象序列化成二进制数据let buf = serde_json::to_vec(&record)?;// 写入文件file.write_all(&buf)?;// 避免操作系统缓存,强制写入磁盘file.sync_all()?;Ok(())
}

Task 2-Write Manifests

现在,您可以继续并修改您的LSM引擎以在必要时写入manifest文件。在此任务中,您需要修改:

src/lsm_storage.rs
src/compact.rs

目前,我们只使用两种类型的manifest记录:转储SST和合并。转储SST操作的manifest记录中存储转储到磁盘的SST id。合并操作的manifest记录中存储了合并任务和生成的SST id。每次向磁盘写入一些新文件时,首先同步文件和存储目录,然后写入manifest并同步manifest。manifest文件应写入<path>/MANIFEST

要同步目录,可以实现sync_dir函数,其中可以使用File::open(dir).sync_all()?来同步它。在Linux上,目录是一个文件,包含目录中的文件列表。通过在目录上执行fsync,您将确保在断电时,新写入的(或删除的)文件可以对用户可见。

记住为后台合并触发器(leveled/simple/universal)和用户请求执行强制合并时写一个合并manifest记录。

  • 创建Manifests文件,先不考虑恢复场景,修改LsmStorageInner::open函数
let mut manifest = None;
if !manifest_path.exists() {manifest = Some(Manifest::create(manifest_path)?);
}...let storage = Self {...manifest,...
};
Ok(storage)
  • 转储SST时写入Manifests文件,修改force_flush_next_imm_memtable,在转储后记录一条记录,ManifestRecord::Flush的变体中只需要记录sst_id
pub fn force_flush_next_imm_memtable(&self) -> Result<()> {...self.manifest.as_ref().unwrap().add_record(&_state_lock, ManifestRecord::Flush(sst_id))?;self.sync_dir()?;
}
  • 合并sst写入Manifests文件,修改trigger_compaction,在合并任务后记录一条记录,ManifestRecord::Compaction的变体中只需要记录合并的task任务和合并结果产生的新的sst
self.manifest.as_ref().unwrap().add_record(&_state_lock, ManifestRecord::Compaction(task, output))?;self.sync_dir()?;

Task 3-Flush on Close

在此任务中,您需要修改:

src/lsm_storage.rs

您需要实现close函数。如果self.options.enable_wal = false(我们将在下一章介绍WAL),那么在停止存储引擎之前,应该将所有的memtable转储到磁盘,这样所有的用户更改都会被持久化。

此前的任务中修改过close函数,就是在close前关闭合并转储线程。新增逻辑:

  • 开启enable_wal开关,待合并转储线程线程停止后直接返回

  • 未开启enable_wal开关,应该将所有的memtable转储到磁盘

pub fn close(&self) -> Result<()> {// 向合并线程发送停止信号self.compaction_notifier.send(()).ok();// 向转储线程发送停止信号self.flush_notifier.send(()).ok();let mut compaction_thread = self.compaction_thread.lock();if let Some(compaction_thread) = compaction_thread.take() {compaction_thread.join().map_err(|e| anyhow::anyhow!("{:?}", e))?;}let mut flush_thread = self.flush_thread.lock();if let Some(flush_thread) = flush_thread.take() {flush_thread.join().map_err(|e| anyhow::anyhow!("{:?}", e))?;}// 开启enable_wal开关直接返回if self.inner.options.enable_wal {return Ok(());}// 未enable_wal开关,转储所有`memtable`if !self.inner.state.read().memtable.is_empty() {self.inner.force_freeze_memtable(&self.inner.state_lock.lock())?;}while {let snapshot = self.inner.state.read();!snapshot.imm_memtables.is_empty()} {self.inner.force_flush_next_imm_memtable()?;}self.inner.sync_dir()?;Ok(())
}

Task 4-Recover from the State

在此任务中,您需要修改:

src/lsm_storage.rs

现在,您可以修改open函数以从manifest文件中恢复引擎状态。要恢复它,您需要首先生成需要加载的SST列表。您可以通过调用apply_compaction_result并恢复LSM状态下的SST id来完成此操作。之后,您可以迭代状态并加载所有SST(更新sstables哈希映射)。在此过程中,您需要计算最大SST id并更新next_sst_id字段。之后,您可以使用该id创建一个新的memtable,并将id递增1。

如果您实施了分级合并,则可能在每次应用合并结果时对SST进行排序。但是,使用manifest recover,你的排序逻辑将被破坏,因为在恢复过程中,你无法知道每个SST的开始键和结束键。要解决这个问题,您需要读取apply_compaction_result函数的in_recovery标志。在恢复过程中,不应尝试检索SST的第一个密钥。在LSM状态恢复并打开所有SST之后,您可以在恢复过程结束时进行排序。

或者,您可以在manifest中包含每个SST的开始密钥和结束密钥。在RocksDB/BadgerDB中使用了这种策略,在apply_compaction_result过程中不需要区分恢复模式和正常模式。

您可以使用mini-lsm-cli来测试您的实现。

cargo run --bin mini-lsm-cli
fill 1000 2000
close
cargo run --bin mini-lsm-cli
get 1500

要运行起mini-lsm-cli还需要执行path参数:cargo run --bin mini-lsm-cli -- --path /tmp/lsm。会将生成的sst保存在该目录下。

从Manifests文件读取记录

使用以下代码可以从文件中反序列化出记录:

pub fn recover(path: impl AsRef<Path>) -> Result<(Self, Vec<ManifestRecord>)> {let mut file = OpenOptions::new().read(true).append(true).open(path).context("failed to recover manifest")?;let mut buf = Vec::new();file.read_to_end(&mut buf)?;let mut stream = Deserializer::from_slice(&buf).into_iter::<ManifestRecord>();let mut records = Vec::new();while let Some(x) = stream.next() {records.push(x?);}Ok((Self {file: Arc::new(Mutex::new(file)),},records,))
}

修改LsmStorageInner::open函数,当Manifests文件文件存在时,走恢复流程

if !manifest_path.exists() {manifest = Some(Manifest::create(manifest_path)?);
} else {// 读取持久化的记录let (m, records) = Manifest::recover(&manifest_path)?;manifest = Some(m);// 遍历记录,回放流程for record in records {match record {ManifestRecord::Flush(sst_id) => {if compaction_controller.flush_to_l0() {state.l0_sstables.insert(0, sst_id);} else {state.levels.insert(0, (sst_id, vec![sst_id]));}next_sst_id = next_sst_id.max(sst_id);}ManifestRecord::NewMemtable(_) => {}ManifestRecord::Compaction(task, output) => {let (new_state, _) =compaction_controller.apply_compaction_result(&state, &task, &output);state = new_state;next_sst_id =next_sst_id.max(output.iter().max().copied().unwrap_or_default());}}}// 读取state中需要读取的SSTfor table_id in state.l0_sstables.iter().chain(state.levels.iter().map(|(_, files)| files).flatten()){let table_id = *table_id;let sst = SsTable::open(table_id,Some(block_cache.clone()),FileObject::open(&Self::path_of_sst_static(path, table_id)).context("failed to open SST")?,)?;state.sstables.insert(table_id, Arc::new(sst));}next_sst_id += 1;state.memtable = Arc::new(MemTable::create(next_sst_id));next_sst_id += 1;
}

可以在指导运行的目录,直接使用cat命令查看Manifests文件,查看写入的内容

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/837542.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

SSTI(模板注入)

SSTI:SSTI(Server-Side Template Injection)即服务端模板注入,它是一种安全漏洞攻击技术。 当应用程序在服务器端使用模板引擎来呈现动态生成的内容时,如果用户可以控制模板引擎的输入,就可能导致 SSTI 漏洞。 服务端接收攻击者的恶意输入以后,未经任何处理就将其作为 Web…

blktrace分析IO

前言 上篇博客介绍了iostat的一些输出,这篇介绍blktrace这个神器。上一节介绍iostat的时候,我们心心念念希望得到块设备处理io的service time,而不是service time + wait time,因为对于评估一个磁盘或者云磁盘而言,service time才是衡量磁盘性能的核心指标和直接指标。很不…

数据库 校验名称唯一性,用于新增和修改功能

数据库 校验名称唯一性,用于新增和修改功能@目录概述代码 概述应用场景:xml,注解方式的自己略微改造即可使用。 提示:存粹方便自己拷贝代码,用于新增和修改前校验名称唯一性问题。代码Service/*** 校验名称是否重名* @Author 211145187* @Date 2022/5/5 15:37* @param nam…

人工智能之机器学习最优化基础——凸优化

凸优化(Convex Optimization) 是优化问题的一个重要分支,其目标是最小化或最大化一个凸函数(或凹函数),通常受限于一组凸约束条件。由于凸优化问题具有良好的数学性质,许多优化问题可以转化为凸优化问题并高效求解。1. 什么是凸优化问题? 一个标准的凸优化问题可以表示…

可信执行环境(TEE)学习笔记

可信执行环境(TEE)学习笔记来越多的数据在云环境下进行存储、共享和计算,云环境下的数据安全与隐私保护也逐渐成为学术界以及工业界关注的热点问题。目前阶段,隐私保护技术主要基于密码算法及协议(如安全多方计算、同态加密等)完成场景落地,其优点主要在于具有较高的安全…

同步与互斥与通信

同步与互斥 同步:两任务要协调 互斥:两任务要争用 举一个例子。在团队活动里,同事A先写完报表,经理B才能拿去向领导汇报。经理B必须等同事A完成报表,AB之间有依赖,B必须放慢脚步,被称为同步。在团队活动中,同事A已经使用会议室了,经理B也想使用,即使经理B是领导,他也…

Windows 自动色彩管理(ACM)

在一些笔记本上Win11可以看到设置里有“自动管理应用的颜色”选项,有些笔记上没有。这里讲下“自动管理应用的颜色”的显示规则 看华为MetaBook E设置界面显示:“自动管理应用的颜色”与“颜色自适应”是一个功能? 不是,颜色自适应是要依赖环境颜色传感器来实现的,有环境颜…

闲话 11.20

杂题乱写 11.2010 days left. 不说闲话,捡重点说。P4113 [HEOI2012] 采花 hh 的项链加强版。 首先考虑莫队,轻松写,轻松 133pts,轻松过不了后两个 hack,考虑优化。 既然是加强版,那么就考虑沿用之前的思路。记录上次出现某个数的位置和上上次出现某个数的位置,离线之后将…

CTFshow渗透知识点

1.robot.txtRobots是一个协议,全称为“网络爬虫协议”,也称爬虫协议、机器人协议等。网站通过Robots协议告诉搜索引擎哪些页面可以访问,哪些不可以访问。 使用方法: 在浏览器的网址搜索框中,输入根域名,再输入/robots.txt即可 博客:Robots.txt在渗透测试中的利用_robots.…

Goby 漏洞发布|超高危!Palo-alto-panos createRemoteAppwebSession.php 命令执行漏洞CVE-2024-0012 CVE-2024-947

漏洞名称:Palo-alto-panos createRemoteAppwebSession.php 命令执行漏洞CVE-2024-0012 CVE-2024-947 English Name:Palo-alto-panos /php/utils/createRemoteAppwebSession.php Command Execution Vulnerability CVE-2024-0012 CVE-2024-9474 CVSS core: 9.5 漏洞描述: Palo…

一个.NET开源、快速、功能丰富的跨平台阅读服务器

前言 今天大姚给大家分享一个基于.NET开源的快速、功能丰富的跨平台阅读服务器,它的设计初衷是提供一个全面的解决方案,满足用户的所有阅读需求。用户可以设置自己的服务器,并与朋友和家人分享阅读收藏:Kavita。 支持格式书籍:epub, pdf。 漫画/网络漫画/漫画书:cbr, cbz…

人工智能之机器学习线代基础——矩阵分类

1. 按维度和大小方阵(Square Matrix):行数和列数相等的矩阵。列矩阵(Column Matrix):只有一列的矩阵。行矩阵(Row Matrix):只有一行的矩阵。零矩阵(Zero Matrix):所有元素均为 0。单位矩阵(Identity Matrix):对角线为 1,其他元素为 0 的方阵。对角矩阵(Diagon…