学习理论:单阶段代理损失的(H, R) - 一致界证明

news/2025/3/6 18:53:05/文章来源:https://www.cnblogs.com/orion-orion/p/18752946

1 导引

我们在上一篇博客《学习理论:预测器-拒绝器多分类弃权学习》中介绍了弃权学习的基本概念和方法,其中包括了下列针对多分类问题的单阶段预测器-拒绝器弃权损失\(L_{\text{abst}}\)

\[L_{\text{abst}}(h, r, x, y) = \underbrace{\mathbb{I}_{\text{h}(x) \neq y}\mathbb{I}_{r(x) > 0}}_{\text{不弃权}} + \underbrace{c(x) \mathbb{I}_{r(x)\leqslant 0}}_{\text{弃权}} \]

其中\((x, y)\in \mathcal{X}\times \mathcal{Y}\)(标签\(\mathcal{Y} = \{1, \cdots, n\}\)\(n\geqslant 2\))),\((h, r)\in \mathcal{H}\times\mathcal{R}\)为预测器-拒绝器对(\(\mathcal{H}\)\(\mathcal{R}\)为两个从\(\mathcal{X}\)\(\mathbb{R}\)的函数构成的函数族),\(\text{h}(x) = \text{arg max}_{y\in \mathcal{Y}} {h(x)}_y\)直接输出实例\(x\)的预测标签。为了简化讨论,在后文中我们假设\(c\in (0, 1)\)为一个常量花费函数。

\(\mathcal{l}\)为在标签\(\mathcal{Y}\)上定义的0-1多分类损失的代理损失,则我们可以在此基础上进一步定义弃权代理损失\(L\)

\[L(h, r, x, y) = \mathcal{l}(h, x, y)\phi(-\alpha r(x)) + \psi(c) \phi(\beta r(x)) \]

其中\(\psi\)是非递减函数,\(\phi\)是非递增辅助函数(做为\(z \mapsto \mathbb{I}_{z \leqslant 0}\)的上界),\(\alpha\)\(\beta\)为正常量。下面,为了简便起见,我们主要对\(\phi(z) = \exp(-z)\)进行分析,尽管相似的分析也可以应用于其它函数\(\phi\)

在上一篇博客中,我们还提到了单阶段代理损失满足的\((\mathcal{H}, \mathcal{R})\)-一致性界:

定理 1 单阶段代理损失的\((\mathcal{H}, \mathcal{R})\) - 一致性界 假设\(\mathcal{H}\)是对称与完备的。则对\(\alpha=\beta\)\(\mathcal{l} = \mathcal{l}_{\text{mae}}\),或者\(\mathcal{l} = \mathcal{l}_{\rho}\)\(\psi(z) = z\),或者\(\mathcal{l} = \mathcal{l}_{\rho - \text{hinge}}\)\(\psi(z) = z\),有下列\((\mathcal{H}, \mathcal{R})\) - 一致性界对\(h\in \mathcal{H}, r\in \mathcal{R}\)和任意分布成立:

\[R_{L_{\text{abst}}}(h, r) - R_{L_{\text{abst}}}^{*}(\mathcal{H}, \mathcal{R}) + M_{L_{\text{abst}}}(\mathcal{H}, \mathcal{R}) \leqslant \Gamma(R_L(h, r) - R_{L}^{*}(\mathcal{H}, \mathcal{R}) + M_{L}(\mathcal{H}, \mathcal{R})) \]

其中对\(\mathcal{l} = \mathcal{l}_{\text{mae}}\)\(\Gamma (z) = \max\{2n\sqrt{z}, nz\}\);对\(\mathcal{l}=\mathcal{l}_{\rho}\)\(\Gamma (z) = \max\{2\sqrt{z}, z\}\);对\(\mathcal{l} = \mathcal{l}_{\rho - \text{hinge}}\)\(\Gamma (z) = \max\{2\sqrt{nz}, z\}\)

不过,在上一篇博客中,我们并没有展示单阶段代理损失的\((\mathcal{H}, \mathcal{R})\)-一致性界的详细证明过程,在这片文章里我们来看该如何对该定理进行证明(正好我导师也让我仔细看看这几篇论文中相关的分析部分,并希望我掌握单阶段方法的证明技术)。

2 一些分析的预备概念

我们假设带标签样本\(S=((x_1, y_1), \cdots, (x_m, y_m))\)独立同分布地采自\(p(x, y)\)。则对于目标损失\(L_{\text{abst}}\)和代理损失\(L\)而言,可分别定义\(L_{\text{abst}}\)-期望弃权损失\(R_{L}(h, r)\)(也即目标损失函数的泛化误差)和\(L\)-期望弃权代理损失\(R_{L}(h, r)\)(也即代理损失函数的泛化误差)如下:

\[R_{L_{\text{abst}}}(h, r) = \mathbb{E}_{p(x, y)}\left[L_{\text{abst}}(h, r, x, y)\right], \quad R_{L}(h, r) = \mathbb{E}_{p(x, y)}\left[L(h, r, x, y)\right] \]

\(R_{{L}^{*}_{\text{abst}}}(\mathcal{H}, \mathcal{R}) = \inf_{h\in \mathcal{H}, r\in \mathcal{R}}R_{L_{\text{abst}}}(\mathcal{H}, \mathcal{R})\)\(R_{L}^{*}(\mathcal{H}, \mathcal{R}) = \inf_{h\in \mathcal{H}, r\in \mathcal{R}}R_{L}(\mathcal{H}, \mathcal{R})\)分别为\(R_{L_{\text{abst}}}\)\(R_L\)\(\mathcal{H}\times \mathcal{R}\)上的下确界。
为了进一步简化后续的分析,我们根据概率的乘法规则将\(R_L(h, r)\)写为:

\[R_{L}(h, r) = \mathbb{E}_{p(x, y)}\left[L(h, r, x, y)\right] = \mathbb{E}_{p(x)}\underbrace{\left[\mathbb{E}_{p(y\mid x)}\left[L(h, r, x, y)\right]\right]}_{\text{conditional risk }C_L} \]

我们称其中内层的条件期望项为代理损失\(L\)条件风险(conditional risk)(也称为代理损失\(L\)的pointwise风险),由于在其计算过程中\(y\)取期望取掉了,因此该项只和\(h\)\(r\)\(x\)相关,因此我们将其记为\(C_L(h, r, x)\)

\[C_L(h, r, x) = \mathbb{E}_{p(y\mid x)}\left[L(h, r, x, y)\right] = \sum_{y\in \mathcal{Y}}p(y\mid x)L(h, r, x, y) \]

我们用\(C^*_L(\mathcal{H}, \mathcal{R}, x) = \inf_{h\in \mathcal{H}, r\in \mathcal{R}} C_L(h, r, x)\)来表示假设类最优(best-in-class)\(L\)的条件风险。同理,我们用\(C_{L_{\text{abst}}}\)来表示目标损失\(L_{\text{abst}}\)的条件风险,并用\(C^*_{L_{\text{abst}}}\)来表示假设类最优的\(L_{\text{abst}}\)的条件风险。

根据\(R_{L}^*(h, r)\)\(C^*_L(\mathcal{H}, \mathcal{R}, x)\),我们可以表示出最小化能力差距(minimizability gap)

\[M_L(\mathcal{H}, \mathcal{R}) = R_{L}^*(\mathcal{H}, \mathcal{R}) - \mathbb{E}_{p(x)}\left[C_L^*(\mathcal{H}, \mathcal{R}, x)\right] \]

\(M_{L_{\text{abst}}}\)的表示同理。

于是,我们可以对要证明的\((\mathcal{H}, \mathcal{R})\)-一致性界进行改写:

\[R_{L_{\text{abst}}}(h, r) - R_{L_{\text{abst}}}^{*}(\mathcal{H}, \mathcal{R}) + M_{L_{\text{abst}}}(\mathcal{H}, \mathcal{R}) \leqslant \Gamma(R_L(h, r) - R_{L}^{*}(\mathcal{H}, \mathcal{R}) + M_{L}(\mathcal{H}, \mathcal{R}))\\ \Rightarrow R_{L_{\text{abst}}}(h, r) - \mathbb{E}_{p(x)}\left[C_{L_{\text{abst}}}^*(\mathcal{H}, \mathcal{R}, x)\right] \leqslant \Gamma\left(R_{L}(h, r) - \mathbb{E}_{p(x)}\left[C_{L}^*(\mathcal{H}, \mathcal{R}, x)\right]\right) \]

其中\(R_{L_{\text{abst}}}(h, r)\)\(R_L(h, r)\)分别为\(\mathbb{E}_{p(x)}C_{L_{\text{abst}}}(h, r, x)\)\(\mathbb{E}_{p(x)}C_{L}(h, r, x)\),于是上述不等式即为

\[\mathbb{E}_{p(x)}\underbrace{\left[C_{L_{\text{abst}}}(h, r, x) - C_{L_{\text{abst}}}^*(\mathcal{H}, \mathcal{R}, x)\right]}_{\Delta C_{L_\text{abst}, \mathcal{H}, \mathcal{R}}(h, r, x)} \leqslant \Gamma\left(\mathbb{E}_{p(x)}\underbrace{\left[C_{L}(h, r, x) - C_{L}^*(\mathcal{H}, \mathcal{R}, x)\right]}_{\Delta C_{L, \mathcal{H}, \mathcal{R}}(h, r, x)}\right) \]

我们将上述不等式两边的被取期望的项简记为\(\Delta C_{L_\text{abst}, \mathcal{H}, \mathcal{R}}(h, r, x)\)\(\Delta C_{L, \mathcal{H}, \mathcal{R}}(h, r, x)\),其中\(\Delta C_{L, \mathcal{H}, \mathcal{R}}(h, r, x)\)被称为校准差距(calibration gap)。由于按定义\(\Gamma(\cdot)\)是凹函数,由Jensen不等式有:

\[\mathbb{E}_{p(x)}\left[\Gamma\left(\Delta C_{L, \mathcal{H}, \mathcal{R}}(h, r, x)\right)\right] \leqslant \Gamma\left(\mathbb{E}_{p(x)}\left[\Delta C_{L, \mathcal{H}, \mathcal{R}}(h, r, x)\right]\right) \]

于是,若我们能证明下述不等式,则原不等式得证:

\[\Delta C_{L_\text{abst}, \mathcal{H}, \mathcal{R}}(h, r, x) \leqslant \Gamma \left(\Delta C_{L, \mathcal{H}, \mathcal{R}}(h, r, x)\right) \]

我们后面将会看到,\((\mathcal{H}, \mathcal{R})\)-一致性界的证明过程中重要的一步即是证明\(\Delta C_{L_\text{abst}, \mathcal{H}, \mathcal{R}}(h, r, x)\)能被\(\Gamma \left(\Delta C_{L, \mathcal{H}, \mathcal{R}}(h, r, x)\right)\)界定。

3 \(\Delta C_{L_\text{abst}, \mathcal{H}, \mathcal{R}}(h, r, x)\)的表示

我们先来看\(\Delta C_{L_\text{abst}, \mathcal{H}, \mathcal{R}}(h, r, x) = C_{L_{\text{abst}}}(h, r, x) - C^*_{L_{\text{abst}}}(\mathcal{H}, \mathcal{R}, x)\)如何表示。根据定义,我们有:

\[\begin{aligned}C_{L_{\text{abst}}}(h, r, x) &= \sum_{y\in \mathcal{Y}}p(y\mid x)L_{\text{abst}}(h, r, x, y) \\&= \sum_{y\in \mathcal{Y}}p(y\mid x) \mathbb{I}_{\text{h}(x) \neq y}\mathbb{I}_{r(x) > 0} + c(x) \mathbb{I}_{r(x)\leqslant 0} \end{aligned} \]

由于是关于\(y\)的条件期望,上式最后一行中只需要对\(\mathbb{I}_{\text{h}(x) \neq y}\)进行加权求和即可。为了进一步对\(C_{L_{\text{abst}}}(h, r, x)\)进行表示,我们需要对\(r(x)\)的正负情况进行分类讨论:

  1. \(r(x) > 0\):此时\(C_{L_{\text{abst}}}(h, r, x) = \sum_{y\in \mathcal{Y}}p(y\mid x) \mathbb{I}_{\text{h}(x) \neq y} = 1 - p(\text{h}(x)\mid x)\)
  2. \(r(x) \leqslant 0\):此时\(C_{L_{\text{abst}}}(h, r, x) = c\)

接下来我们来看\(C^*_{L_{\text{abst}}}\)如何表示。我们假设拒绝函数集\(\mathcal{R}\)是完备的(也即对任意\(x\in \mathcal{X}, \{r(x): r\in \mathcal{R}\} = \mathbb{R}\)),那么\(\mathcal{R}\)也是弃权正规的(也即使得对任意\(x\in \mathcal{X}\),存在\(r_1, r_2\in \mathcal{R}\)满足\(r_1(x) > 0\)\(r_2(x) \leqslant 0\))。于是我们有

\[\begin{aligned}C^*_{L_{\text{abst}}}(\mathcal{H}, \mathcal{R}, x) &= \inf_{h\in \mathcal{H}, r\in \mathcal{R}}C_{L_{\text{abst}}}(h, r, x)\\& = \min \left\{\min_{h\in \mathcal{H}}\left(1 - p\left( \text{h}(x)\mid x\right)\right), c\right\}\\& = 1 - \max\left\{\max_{h\in \mathcal{H}}p\left(\text{h}(x)\mid x\right), 1 - c\right\} \end{aligned} \]

我们假设\(\mathcal{H}\)是对称的且完备的(具体定义参见博客《学习理论:预测器-拒绝器多分类弃权学习》),则我们有\(\{\text{h}(x): h\in \mathcal{H}\} = \mathcal{Y}\),于是

\[C^*_{L_{\text{abst}}}(\mathcal{H}, \mathcal{R}, x) = 1 - \max\left\{\max_{y\in \mathcal{Y}}p\left(y\mid x\right), 1 - c\right\} \]

为了进一步对\(C^*_{L_{\text{abst}}}(\mathcal{H}, \mathcal{y}, x)\)进行表示,我们需要对\(\max_{y\in \mathcal{Y}}p(y\mid x)\)\((1 - c)\)的大小比较情况进行分类讨论:

  1. \(\max_{y\in \mathcal{Y}}p(y\mid x) > 1 - c\):此时\(C^*_{L_{\text{abst}}}(\mathcal{H}, \mathcal{R}, x) = 1 - \max_{y\in \mathcal{Y}}p(y\mid x)\)
  2. \(\max_{y\in \mathcal{Y}}p(y\mid x) \leqslant 1 - c\):此时\(C^*_{L_{\text{abst}}}(\mathcal{H}, \mathcal{R}, x) = c\)

于是,我们有:

\[\begin{aligned}\Delta C_{L_\text{abst}, \mathcal{H}, \mathcal{R}}(h, r, x) &= C_{L_{\text{abst}}}(h, r, x) - C^*_{L_{\text{abst}}}(\mathcal{H}, \mathcal{R}, x) \\& = \left\{\begin{aligned}&\max_{y\in \mathcal{Y}}p(y\mid x) - p(\text{h}(x)\mid x)\quad &\text{if } \max_{y\in \mathcal{Y}} p(y\mid x) > (1 - c),r(x) > 0 \\&1 - c - p(\text{h}(x)\mid x) \quad &\text{if } \max_{y\in \mathcal{Y}} p(y\mid x) \leqslant (1 - c),r(x) > 0 \\&0 \quad &\text{if } \max_{y\in \mathcal{Y}} p(y\mid x) \leqslant (1 - c),r(x) \leqslant 0 \\&\max_{y\in \mathcal{Y}}p(y\mid x) - 1 + c \quad &\text{if } \max_{y\in \mathcal{Y}} p(y\mid x) > (1 - c),r(x) \leqslant 0 \\ \end{aligned}\right. \end{aligned} \]

4 \(\Delta C_{L, \mathcal{H}, \mathcal{R}}(h, r, x)\)的表示

4.1 分类讨论的准备

接下来我们来看\(\Delta C_{L, \mathcal{H}, \mathcal{R}}(h, r, x) = C_L(h, r, x) - C^*_L(\mathcal{H}, \mathcal{R}, x)\)如何表示。根据定义,若\(\alpha = \beta\)\(\phi(z) = \exp(-z)\),我们有:

\[\begin{aligned}C_L(h, r, x) &= \sum_{y\in \mathcal{Y}}p(y\mid x)L(h, r, x, y) \\&= \sum_{y\in \mathcal{Y}}p(y\mid x) \mathcal{l}(h, x, y)e^{\alpha r(x)} + \psi(c) e^{-\alpha r(x)} \end{aligned} \]

由于是关于\(y\)的条件期望,上式最后一行中只需要对\(\mathcal{l}(h, x, y)\)进行加权求和即可。在后文中我们将会针对下列三种不同的\(\mathcal{l}\)函数以及\(\psi(z)\)的选择情况来分别对\(C_L(h, r, x)\)进行讨论:

  1. \(\mathcal{l} = \mathcal{l}_{\text{mae}}\)\(\psi(z) = z\)
  2. \(\mathcal{l} = \mathcal{l}_{\rho}\)\(\psi(z) = z\)
  3. \(\mathcal{l} = \mathcal{l}_{\rho-\text{hinge}}\)\(\psi(z) = nz\)

这三种不同\(\mathcal{l}\)的定义参见博客《学习理论:预测器-拒绝器多分类弃权学习》),我在这里把它们的定义贴一下:

  • 平均绝对误差损失:\(\mathcal{l}_{\text{mae}}(h, x, y) = 1 - \frac{e^{{h(x)}_y}}{\sum_{y^{\prime}\in \mathcal{Y}}e^{{h(x)}_{y^{\prime}}}}\)
  • 约束\(\rho\)-合页损失:\(\mathcal{l}_{\rho-\text{hinge}}(h, x, y) = \sum_{y^{\prime}\neq y}\phi_{\rho-\text{hinge}}(-{h(x)}_{y^{\prime}}), \rho > 0\),其中\(\phi_{\rho-\text{hinge}}(z) = \max\{0, 1 - \frac{z}{\rho}\}\)\(\rho\)-合页损失,且约束条件\(\sum_{y\in \mathcal{Y}}{h(x)}_y=0\)
  • \(\rho\)-间隔损失:\(\mathcal{l}_{\rho}(h, x, y) = \phi_{\rho}({\rho_h (x, y)})\),其中\(\rho_{h}(x, y) = h(x)_y - \max_{y^{\prime} \neq y}h(x)_{y^{\prime}}\)是置信度间隔,\(\phi_{\rho}(z) = \min\{\max\{0, 1 - \frac{z}{\rho}\}, 1\}, \rho > 0\)\(\rho\)-间隔损失。

4.2 \(\mathcal{l} = \mathcal{l}_{\text{mae}}\)\(\psi(z) = z\)

在这种情况下\(C_L(h, r, x)\)可以表示为:

\[\begin{aligned}C_L(h, r, x) &= \sum_{y\in \mathcal{Y}}p(y\mid x) \underbrace{\left(1 - \frac{e^{{h(x)}_y}}{\sum_{y^{\prime}\in \mathcal{Y}}e^{{h(x)}_{y^{\prime}}}}\right)}_{\mathcal{l}_{\text{mae}}}e^{\alpha r(x)} + c e^{-\alpha r(x)} \\&= \sum_{y\in \mathcal{Y}}p(y\mid x) \left(1 - s_h(x, y)\right)e^{\alpha r(x)} + c e^{-\alpha r(x)} \end{aligned} \]

其中\(s_h(x, y) = \frac{e^{{h(x)}_y}}{\sum_{y^{\prime}\in \mathcal{Y}}e^{{h(x)}_{y^{\prime}}}}\)

于是

\[\begin{aligned}C_L^*(\mathcal{H}, \mathcal{R}, x) &= \inf_{h\in \mathcal{H}, r\in\mathcal{R}} \left\{\sum_{y\in \mathcal{Y}}p(y\mid x) \left(1 - s_h(x, y)\right)e^{\alpha r(x)} + c e^{-\alpha r(x)}\right\} \\&= \inf_{r\in\mathcal{R}} \left\{\inf_{h\in \mathcal{H}}\left\{\sum_{y\in \mathcal{Y}}p(y\mid x) \left(1 - s_h(x, y)\right)\right\}e^{\alpha r(x)} + c e^{-\alpha r(x)}\right\} \end{aligned} \]

由于假设了\(\mathcal{H}\)是对称的与完备的,我们有

\[\begin{aligned}&\inf_{h\in \mathcal{H}}\left\{\sum_{y\in \mathcal{Y}}p(y\mid x) \left(1 - s_h(x, y\right))\right\} \\&= 1 - \sup_{h\in \mathcal{H}}\sum_{y\in \mathcal{Y}}p(y\mid x)s_h(x, y) \\&= 1 - \max_{y\in \mathcal{Y}}p(y\mid x)\quad \left(s_h(x, y)\in (0, 1)\right) \end{aligned} \]

实际上,对任意\(h\in \mathcal{H}\),有:

\[\begin{aligned}&\sum_{y\in \mathcal{Y}}p(y\mid x) \left(1 - s_h(x, y)\right) - \left(1 - \max_{y\in \mathcal{Y}}p\left(y\mid x\right)\right) \\&= \max_{y\in \mathcal{Y}} p(y\mid x) - \sum_{y\in \mathcal{Y}}p(y\mid x)s_h(x, y) \\&= \max_{y\in \mathcal{Y}} p(y\mid x) - \left(p\left(\text{h}(x)\mid x\right)s_h\left(x, \text{h}(x)\right) + \sum_{y\neq \text{h}(x)}p(y\mid x)s_h(x, y)\right) \\&\geqslant \max_{y\in \mathcal{Y}} p(y\mid x) - \left(p\left(\text{h}(x)\mid x\right)s_h\left(x, \text{h}(x)\right) + \max_{y\in \mathcal{Y}}p(y\mid x)\left(1 - s_h\left(x, \text{h}(x)\right)\right)\right) \\&= s_h\left(x, \text{h}(x)\right)\left(\max_{y\in \mathcal{Y}}p(y\mid x) - p\left(\text{h}(x)\mid x\right)\right) \\&\geqslant \frac{1}{n} \left(\max_{y\in \mathcal{Y}}p(y\mid x) - p\left(\text{h}(x)\mid x\right)\right) \end{aligned} \]

这个结论我们会在后面的证明中多次用到。该结论的一个推论是如果分类器\(h^*\)为贝叶斯最优分类器(也即\(p(\text{h}^*(x)\mid x) = \max_{y\in \mathcal{Y}} p(y\mid x)\)),则\(\sum_{y\in \mathcal{Y}}p(y\mid x) \left(1 - s_h(x, y)\right) - \left(1 - \max_{y\in \mathcal{Y}}p(y\mid x)\right) \geqslant 0\),可直观地将其理解为\(\mathbb{E}_{p(y\mid x)}\left[\mathcal{l}_{\text{mae}}\right]\)更可能接近其下确界。

于是

\[C_L^*(\mathcal{H}, \mathcal{R}, x) = \inf_{r\in\mathcal{R}} \left\{\left(1 - \max_{y\in \mathcal{Y}}p(y\mid x)\right)e^{\alpha r(x)} + c e^{-\alpha r(x)}\right\} \]

记上式中需要求极值的部分为泛函\(F(r)\),则其泛函导数为

\[\frac{\delta F}{\delta r(x)} = \alpha \left(1 - \max_{y\in \mathcal{Y}}p(y\mid x)\right)e^{\alpha r(x)} - c\alpha e^{-\alpha r(x)} \]

\(\frac{\delta F}{\delta p(x)} = 0\)(对\(\forall x\in \mathcal{X}\)),解得\(r^*(x) = -\frac{1}{2\alpha}\log \left(\frac{1 - \max_{y\in \mathcal{Y}}p(y\mid x)}{c}\right)\)。将其代入\(F(r)\)可得:

\[C_L^*(\mathcal{H}, \mathcal{R}, x) = 2\sqrt{c(1 - \max_{y\in \mathcal{Y}}p(y\mid x))} \]

于是

\[\begin{aligned}\Delta C_{L, \mathcal{H}, \mathcal{R}}(h, r, x) &= C_L(h, r, x) - C^*_L(\mathcal{H}, \mathcal{R}, x) \\&= \sum_{y\in \mathcal{Y}}p(y\mid x) \left(1 - s_h(x, y)\right)e^{\alpha r(x)} + c e^{-\alpha r(x)} - 2\sqrt{c(1 - \max_{y\in \mathcal{Y}}p(y\mid x))} \end{aligned} \]

为了构建\(\Delta C_{L_\text{abst}, \mathcal{H}, \mathcal{R}}(h, r, x)\)\(\Gamma \left(\Delta C_{L, \mathcal{H}, \mathcal{R}}(h, r, x)\right)\)的不等式关系,接下来我们将会采用第3节中类似的做法,针对\(\max_{y\in \mathcal{Y}} p(y\mid x)\)\(1 - c\)的大小比较情况与\(r(x)\)的正负情况来对\(\Delta C_{L, \mathcal{H}, \mathcal{R}}(h, r, x)\)进行分类讨论:

  1. \(\max_{y\in \mathcal{Y}} p(y\mid x) > (1 - c)\)\(r(x) > 0\)
    此时

    \[\begin{aligned}\Delta C_{L, \mathcal{H}, \mathcal{R}}(h, r, x) &= \sum_{y\in \mathcal{Y}}p(y\mid x) \left(1 - s_h(x, y)\right)e^{\alpha r(x)} + c e^{-\alpha r(x)} - 2\sqrt{c\left(1 - \max_{y\in \mathcal{Y}}p(y\mid x)\right)} \\& \geqslant \sum_{y\in \mathcal{Y}}p(y\mid x) \left(1 - s_h(x, y)\right)e^{\alpha r(x)} + c e^{-\alpha r(x)} - \left(c + \underbrace{\left(1 - \max_{y\in \mathcal{Y}}p(y\mid x)\right)}_{<c}\right) \\& \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad (\text{AM-GM inequality}) \\&\geqslant \sum_{y\in \mathcal{Y}}p(y\mid x) \left(1 - s_h(x, y)\right)e^{\alpha r(x)} + c e^{-\alpha r(x)} - ce^{-\alpha r(x)} - \left(1 - \max_{y\in \mathcal{Y}}p(y\mid x)\right)e^{\alpha r(x)} \\&\geqslant \sum_{y\in \mathcal{Y}}p(y\mid x) \left(1 - s_h(x, y)\right) - \left(1 - \max_{y\in \mathcal{Y}}p(y\mid x)\right)\\&\geqslant \frac{1}{n} \left(\max_{y\in \mathcal{Y}}p(y\mid x) - p\left(\text{h}(x)\mid x\right)\right) \\&= \frac{1}{n} \Delta C_{\text{abst}, \mathcal{H}, \mathcal{R}}(h, r, x) \end{aligned} \]

    (其中\(\text{AM-GM inequality}\)为算术-几何平均值不等式)
    \(\Gamma (z) = nz\),于是\(\Delta C_{L_\text{abst}, \mathcal{H}, \mathcal{R}}(h, r, x) \leqslant \Gamma \left(\Delta C_{L, \mathcal{H}, \mathcal{R}}(h, r, x)\right)\)得证。

  2. \(\max_{y\in \mathcal{Y}} p(y\mid x) \leqslant (1 - c)\)\(r(x) > 0\)

    \[ \begin{aligned}\Delta C_{L, \mathcal{H}, \mathcal{R}}(h, r, x) &= \sum_{y\in \mathcal{Y}}p(y\mid x) \left(1 - s_h(x, y)\right)e^{\alpha r(x)} + c e^{-\alpha r(x)} - 2\sqrt{c\left(1 - \max_{y\in \mathcal{Y}}p(y\mid x)\right)} \\& \geqslant \underbrace{\sum_{y\in \mathcal{Y}}p(y\mid x) \left(1 - s_h\left(x, y\right)\right)}_{\geqslant c}e^{\alpha r(x)} + c e^{-\alpha r(x)} - 2\sqrt{c\left(\sum_{y\in \mathcal{Y}}p(y\mid x)\left(1 - s_h(x, y)\right)\right)} \\& \geqslant \sum_{y\in \mathcal{Y}}p(y\mid x) \left(1 - s_h(x, y)\right) + c - 2\sqrt{c\left(\sum_{y\in \mathcal{Y}}p(y\mid x)\left(1 - s_h(x, y)\right)\right)} \\&= \left(\sqrt{\sum_{y\in \mathcal{Y}}p(y\mid x) \left(1 - s_h(x, y)\right)} - \sqrt{c}\right)^2 \\&= \left(\frac{\sum_{y\in \mathcal{Y}}p(y\mid x) \left(1 - s_h(x, y)\right) - c}{\sqrt{\sum_{y\in \mathcal{Y}}p(y\mid x) \left(1 - s_h(x, y)\right)} + \sqrt{c}}\right)^2 \\&\geqslant \left(\frac{\sum_{y\in \mathcal{Y}}p(y\mid x) \left(1 - s_h(x, y)\right) - \left(1 - \max_{y\in \mathcal{Y}}p(y\mid x)\right) + \left(1 - \max_{y\in \mathcal{Y}}p(y\mid x) - c\right)}{2}\right)^2 \\&\geqslant \left(\frac{\frac{1}{n} \left(\max_{y\in \mathcal{Y}}p(y\mid x) - p\left(\text{h}(x)\mid x\right)\right) + \frac{1}{n}\left(1 - \max_{y\in \mathcal{Y}}p(y\mid x) - c\right)}{2}\right)^2 \\&= \frac{1}{4n^2}\left(1 - c - p\left(\text{h}(x)\mid x\right)\right)^2 \\&= \frac{\Delta C_{\text{abst}, \mathcal{H}, \mathcal{R}}(h, r, x)^2}{4n^2}\end{aligned} \]

    \(\Gamma (z) = 2n\sqrt{z}\),于是\(\Delta C_{L_\text{abst}, \mathcal{H}, \mathcal{R}}(h, r, x) \leqslant \Gamma \left(\Delta C_{L, \mathcal{H}, \mathcal{R}}(h, r, x)\right)\)得证。

  3. \(\max_{y\in \mathcal{Y}} p(y\mid x) \leqslant (1 - c)\)\(r(x) \leqslant 0\)
    由于此时\(\Delta C_{L_\text{abst}, \mathcal{H}, \mathcal{R}}(h, r, x) = 0\),因此\(\Delta C_{L_\text{abst}, \mathcal{H}, \mathcal{R}}(h, r, x) \leqslant \Gamma\left(\Delta C_{L, \mathcal{H}, \mathcal{R}}(h, r, x)\right)\)对任意\(\Gamma \geqslant 0\)成立。

  4. \(\max_{y\in \mathcal{Y}} p(y\mid x) > (1 - c)\)\(r(x) \leqslant 0\)

    \[ \begin{aligned}\Delta C_{L, \mathcal{H}, \mathcal{R}}(h, r, x) &= \sum_{y\in \mathcal{Y}}p(y\mid x) \left(1 - s_h(x, y)\right)e^{\alpha r(x)} + c e^{-\alpha r(x)} - 2\sqrt{c\left(1 - \max_{y\in \mathcal{Y}}p(y\mid x)\right)} \\&\geqslant \left(1 - \max_{y\in \mathcal{Y}}p(y\mid x)\right)\underbrace{e^{\alpha r(x)}}_{\leqslant 1} + c \underbrace{e^{-\alpha r(x)}}_{\geqslant 1} - 2\sqrt{c\left(1 - \max_{y\in \mathcal{Y}}p(y\mid x)\right)} \\&\geqslant 1 - \max_{y\in \mathcal{Y}}p(y\mid x) + c - 2\sqrt{c\left(1 - \max_{y\in \mathcal{Y}}p(y\mid x)\right)} \\&= \left(\sqrt{1 - \max_{y\in \mathcal{Y}}p(y\mid x)} - \sqrt{c}\right)^2 \\&= \left(\frac{1 - \max_{y\in \mathcal{Y}}p(y\mid x) - c}{\sqrt{1 - \max_{y\in \mathcal{Y}}p(y\mid x)} + \sqrt{c}}\right)^2 \\&\geqslant \left(\frac{\max_{y\in \mathcal{Y}}p(y\mid x) - 1 + c}{2}\right)^2 \\&= \frac{\Delta C_{\text{abst}, \mathcal{H}, \mathcal{R}}(h, r, x)^2}{4}\end{aligned} \]

    \(\Gamma (z) = 2\sqrt{z}\),于是\(\Delta C_{L_\text{abst}, \mathcal{H}, \mathcal{R}}(h, r, x) \leqslant \Gamma \left(\Delta C_{L, \mathcal{H}, \mathcal{R}}(h, r, x)\right)\)得证。

综上所述,若取\(\Gamma(z) = \max\{\Gamma_1(z), \Gamma_2(z), \Gamma_3(z)\} = \max\{2n\sqrt{z}, nz\}\),则恒有\(\Delta C_{L_\text{abst}, \mathcal{H}, \mathcal{R}}(h, r, x) \leqslant \Gamma \left(\Delta C_{L, \mathcal{H}, \mathcal{R}}(h, r, x)\right)\)。于是\(\mathcal{l} = \mathcal{l}_{\text{mae}}\)\(\psi(z) = z\)时单阶段代理损失的\((\mathcal{H}, \mathcal{R})\)-一致性界得证。

4.3 \(\mathcal{l} = \mathcal{l}_{\rho}\)\(\psi(z) = z\)

在这种情况下\(C_L(h, r, x)\)可以表示为:

\[\begin{aligned}C_L(h, r, x) &= \sum_{y\in \mathcal{Y}}p(y\mid x) \underbrace{\min\left\{\max\left\{0, 1 - \frac{\rho_h(x, y)}{\rho}\right\}, 1\right\}}_{\mathcal{l}_{\rho}}e^{\alpha r(x)} + c e^{-\alpha r(x)} \\&= \left(1 - \sum_{y\in \mathcal{Y}} p(y\mid x)\max\left\{\min\left\{1, \frac{\rho_h(x, y)}{\rho}\right\}, 0\right\}\right)e^{\alpha r(x)} + c e^{-\alpha r(x)} \\&= \left(1 - \sum_{y\in \mathcal{Y}} p(y\mid x)\min\left\{1, \frac{\rho_h(x, y)}{\rho}\right\}\right)e^{\alpha r(x)} + c e^{-\alpha r(x)} \end{aligned} \]

其中\(\rho_h(x, y) = h(x)_y - \max_{y^{\prime}\neq y}h(x)_{y^{\prime}}\)为间隔。

由于假设了\(\mathcal{H}\)是对称的与完备的,我们有

\[\begin{aligned}&\inf_{h\in \mathcal{H}}\left\{1 - \sum_{y\in \mathcal{Y}} p (y\mid x)\min\left\{1, \frac{\rho_h(x, y)}{\rho}\right\}\right\} \\&= 1 - \sup_{h\in \mathcal{H}}\sum_{y\in \mathcal{Y}}p(y\mid x)\min\left\{1, \frac{\rho_h(x, y)}{\rho}\right\} \\&= 1 - \max_{y\in \mathcal{Y}}p\left(y\mid x\right)\quad (\min\left\{1, \frac{\rho_h(x, y)}{\rho}\right\}\in [0, 1]) \end{aligned} \]

实际上,对任意\(h\in \mathcal{H}\),有:

\[\begin{aligned}&\left(1 - \sum_{y\in \mathcal{Y}} p (y\mid x)\min\left\{1, \frac{\rho_h(x, y)}{\rho}\right\}\right) - \left(1 - \max_{y\in \mathcal{Y}}p\left(y\mid x\right)\right) \\&= \max_{y\in \mathcal{Y}} p(y\mid x) - \sum_{y\in \mathcal{Y}} p (y\mid x)\min\left\{1, \frac{\rho_h(x, y)}{\rho}\right\} \\&= \max_{y\in \mathcal{Y}} p(y\mid x) - \min \left\{1, \frac{\rho_h\left(x, \text{h}(x)\right)}{\rho}\right\}p\left(\text{h}(x)\mid x\right) \\ &\geqslant \max_{y\in \mathcal{Y}}p\left(y\mid x\right) - p\left(\text{h}(x)\mid x\right) \end{aligned} \]

和之前\(\mathcal{l}_{\text{mae}}\)的证明类似,这个结论我们会在后面的证明中多次用到。

于是和之前\(\mathcal{l}_{\text{mae}}\)类似,我们有

\[C_L^*(\mathcal{H}, \mathcal{R}, x) = 2\sqrt{c(1 - \max_{y\in \mathcal{Y}}p\left(y\mid x\right))} \]

于是

\[\begin{aligned}\Delta C_{L, \mathcal{H}, \mathcal{R}}(h, r, x) &= C_L(h, r, x) - C^*_L(\mathcal{H}, \mathcal{R}, x) \\&= \left(1 - \sum_{y\in \mathcal{Y}} p (y\mid x)\min\left\{1, \frac{\rho_h(x, y)}{\rho}\right\}\right)e^{\alpha r(x)} + c e^{-\alpha r(x)} - 2\sqrt{c(1 - \max_{y\in \mathcal{Y}}p\left(y\mid x\right))} \end{aligned} \]

为了构建\(\Delta C_{L_\text{abst}, \mathcal{H}, \mathcal{R}}(h, r, x)\)\(\Gamma \left(\Delta C_{L, \mathcal{H}, \mathcal{R}}(h, r, x)\right)\)的不等式关系,接下来我们将会采用\(\mathcal{l}_{\text{mae}}\)的证明中类似的做法,针对\(\max_{y\in \mathcal{Y}} p(y\mid x)\)\(1 - c\)的大小比较情况与\(r(x)\)的正负情况来对\(\Delta C_{L, \mathcal{H}, \mathcal{R}}(h, r, x)\)进行分类讨论:

  1. \(\max_{y\in \mathcal{Y}} p(y\mid x) > (1 - c)\)\(r(x) > 0\)
    此时

    \[\begin{aligned}\Delta C_{L, \mathcal{H}, \mathcal{R}}(h, r, x) &= \left(1 - \sum_{y\in \mathcal{Y}} p (y\mid x)\min\left\{1, \frac{\rho_h(x, y)}{\rho}\right\}\right)e^{\alpha r(x)} + c e^{-\alpha r(x)} - 2\sqrt{c\left(1 - \max_{y\in \mathcal{Y}}p\left(y\mid x\right)\right)} \\&\geqslant \frac{1}{4}\left(1 - c - p\left(\text{h}\left(x\right)\mid x\right)\right)^2 \\&= \frac{\Delta C_{\text{abst}, \mathcal{H}, \mathcal{R}}(h, r, x)^2}{4} \end{aligned} \]

    (由于证明步骤与\(\mathcal{l}_{\text{mae}}\)类似,这里对证明步骤进行了一些精简,下面同理)
    \(\Gamma_2 (z) = 2\sqrt{z}\),于是\(\Delta C_{L_\text{abst}, \mathcal{H}, \mathcal{R}}(h, r, x) \leqslant \Gamma (\Delta C_{L, \mathcal{H}, \mathcal{R}}(h, r, x))\)得证。

  2. \(\max_{y\in \mathcal{Y}} p(y\mid x) \leqslant (1 - c)\)\(r(x) > 0\)

    \[\Delta C_{L, \mathcal{H}, \mathcal{R}}(h, r, x) \geqslant \max_{y\in \mathcal{Y}}p(y\mid x) - p(\text{h}(x)\mid x) = \Delta C_{\text{abst}, \mathcal{H}, \mathcal{R}}(h, r, x) \]

    \(\Gamma_1 (z) = z\),于是\(\Delta C_{L_\text{abst}, \mathcal{H}, \mathcal{R}}(h, r, x) \leqslant \Gamma (\Delta C_{L, \mathcal{H}, \mathcal{R}}(h, r, x))\)得证。

  3. \(\max_{y\in \mathcal{Y}} p(y\mid x) \leqslant (1 - c)\)\(r(x) \leqslant 0\)
    由于此时\(\Delta C_{L_\text{abst}, \mathcal{H}, \mathcal{R}}(h, r, x) = 0\),因此\(\Delta C_{L_\text{abst}, \mathcal{H}, \mathcal{R}}(h, r, x) \leqslant \Gamma (\Delta C_{L, \mathcal{H}, \mathcal{R}}(h, r, x))\)对任意\(\Gamma \geqslant 0\)成立。

  4. \(\max_{y\in \mathcal{Y}} p(y\mid x) > (1 - c)\)\(r(x) \leqslant 0\)

    \[\Delta C_{L, \mathcal{H}, \mathcal{R}}(h, r, x) \geqslant \left(\frac{\max_{y\in \mathcal{Y}}p(y\mid x) - 1 + c}{2}\right)^2 = \frac{\Delta C_{\text{abst}, \mathcal{H}, \mathcal{R}}(h, r, x)^2}{4} \]

    \(\Gamma_3 (z) = 2\sqrt{z}\),于是\(\Delta C_{L_\text{abst}, \mathcal{H}, \mathcal{R}}(h, r, x) \leqslant \Gamma (\Delta C_{L, \mathcal{H}, \mathcal{R}}(h, r, x))\)得证。

综上所述,若取\(\Gamma(z) = \max\{\Gamma_1(z), \Gamma_2(z), \Gamma_3(z)\} = \max\{2\sqrt{z}, z\}\),则恒有\(\Delta C_{L_\text{abst}, \mathcal{H}, \mathcal{R}}(h, r, x) \leqslant \Gamma (\Delta C_{L, \mathcal{H}, \mathcal{R}}(h, r, x))\)。于是\(\mathcal{l} = \mathcal{l}_{\rho}\)\(\psi(z) = z\)时单阶段代理损失的\((\mathcal{H}, \mathcal{R})\)-一致性界得证。

4.4 \(\mathcal{l} = \mathcal{l}_{\rho-\text{hinge}}\)\(\psi(z) = nz\)

在这种情况下\(C_L(h, r, x)\)可以表示为:

\[\begin{aligned}C_L(h, r, x) &= \sum_{y\in \mathcal{Y}}p(y\mid x) \underbrace{\sum_{y^{\prime} \neq y}\max\left\{0, 1 + \frac{h(x)_{y^{\prime}}}{\rho}\right\}}_{\mathcal{l}_{\rho}-\text{hinge}}e^{\alpha r(x)} + nce^{-\alpha r(x)} \\&= \sum_{y\in \mathcal{Y}}\left(1 - p(y\mid x)\right)\max\left\{0, 1 + \frac{h(x)_y}{\rho}\right\}e^{\alpha r(x)} + nce^{-\alpha r(x)} \\ \end{aligned} \]

由于假设了\(\mathcal{H}\)是对称的与完备的,我们有

\[\begin{aligned}&\inf_{h\in \mathcal{H}}\left\{\sum_{y\in \mathcal{Y}}\left(1 - p(y\mid x)\right)\max\left\{0, 1 + \frac{h(x)_y}{\rho}\right\}\right\} \\&= n - \sup_{h\in \mathcal{H}}\sum_{y\in \mathcal{Y}}p(y\mid x)\max\left\{0, 1 + \frac{h(x)_y}{\rho}\right\} \\&= n\left(1 - \max_{y\in \mathcal{Y}}p\left(y\mid x\right)\right) \end{aligned} \]

实际上,若取\(h_{\rho}\)使得\(h_{\rho}(x)_y = \left\{\begin{aligned}&h(x)_y\quad &\text{if } y\notin \left\{y_{\max}, \text{h}(x)\right\} \\&-\rho \quad &\text{if } y = \text{h}(x) \\&h\left(x\right)_{y_{\text{max}}} + h\left(x\right)_{\text{h}(x)} + \rho \quad &\text{if } y = y_{\text{max}} \\ \end{aligned}\right.\)满足约束\(\sum_{y\in \mathcal{Y}}h_{\rho}(y\mid x)=0\),其中\(y_{\max} = \text{arg max}_{y\in \mathcal{Y}}p(y\mid x)\),则对任意\(h\in \mathcal{H}\)有:

\[\begin{aligned}&\sum_{y\in \mathcal{Y}}\left(1 - p(y\mid x)\right)\max\left\{0, 1 + \frac{h(x)_y}{\rho}\right\} - n\left(1 - \max_{y\in \mathcal{Y}}p\left(y\mid x\right)\right) \\&\geqslant \sum_{y\in \mathcal{Y}}\left(1 - p(y\mid x)\right)\min\left\{n, \max\left\{0, 1 + \frac{h(x)_y}{\rho}\right\}\right\} - n\left(1 - \max_{y\in \mathcal{Y}}p\left(y\mid x\right)\right) \\&\geqslant \sum_{y\in \mathcal{Y}}\left(1 - p(y\mid x)\right)\min\left\{n, \max\left\{0, 1 + \frac{h(x)_y}{\rho}\right\}\right\} \\&\quad - \sum_{y\in \mathcal{Y}}\left(1 - p(y\mid x)\right)\min\left\{n, \max\left\{0, 1 + \frac{h_{\rho}(x)_y}{\rho}\right\}\right\} \\ &= \left(p(y_{\text{max}}\mid x) - p(\text{h}(x)\mid x)\right)\min\left\{n, 1 + \frac{h(x)_{\text{h}(x)}}{\rho}\right\} \\ &\geqslant \max_{y\in \mathcal{Y}}p\left(y\mid x\right) - p\left(\text{h}\left(x\right)\mid x\right) \end{aligned} \]

和之前\(\mathcal{l}_{mae}\)\(\mathcal{l}_{\rho}\)的证明类似,这个结论我们会在后面的证明中多次用到。

于是和之前\(\mathcal{l}_{mae}\)\(\mathcal{l}_{\rho}\)类似,我们有

\[C_L^*(\mathcal{H}, \mathcal{R}, x) = 2\sqrt{n^2c(1 - \max_{y\in \mathcal{Y}}p\left(y\mid x\right))} \]

于是

\[\begin{aligned}\Delta C_{L, \mathcal{H}, \mathcal{R}}(h, r, x) &= C_L(h, r, x) - C^*_L(\mathcal{H}, \mathcal{R}, x) \\&= \sum_{y\in \mathcal{Y}}\left(1 - p(y\mid x)\right)\max\left\{0, 1 + \frac{h(x)_y}{\rho}\right\}e^{\alpha r(x)} + c e^{-\alpha r(x)} - 2\sqrt{c(1 - \max_{y\in \mathcal{Y}}p\left(y\mid x\right))} \end{aligned} \]

为了构建\(\Delta C_{L_\text{abst}, \mathcal{H}, \mathcal{R}}(h, r, x)\)\(\Gamma \left(\Delta C_{L, \mathcal{H}, \mathcal{R}}(h, r, x)\right)\)的不等式关系,接下来我们将会采用\(\mathcal{l}_{\text{mae}}\)\(\mathcal{l}_{\rho}\)的证明中类似的做法,针对\(\max_{y\in \mathcal{Y}} p(y\mid x)\)\(1 - c\)的大小比较情况与\(r(x)\)的正负情况来对\(\Delta C_{L, \mathcal{H}, \mathcal{R}}(h, r, x)\)进行分类讨论:

  1. \(\max_{y\in \mathcal{Y}} p(y\mid x) > (1 - c)\)\(r(x) > 0\)
    此时

    \[\Delta C_{L, \mathcal{H}, \mathcal{R}}(h, r, x) \geqslant \max_{y\in \mathcal{Y}}p(y\mid x) - p(\text{h}(x)\mid x) = \Delta C_{\text{abst}, \mathcal{H}, \mathcal{R}}(h, r, x)^2 \]

    \(\Gamma_1 (z) = z\),于是\(\Delta C_{L_\text{abst}, \mathcal{H}, \mathcal{R}}(h, r, x) \leqslant \Gamma (\Delta C_{L, \mathcal{H}, \mathcal{R}}(h, r, x))\)得证。

  2. \(\max_{y\in \mathcal{Y}} p(y\mid x) \leqslant (1 - c)\)\(r(x) > 0\)

    \[\Delta C_{L, \mathcal{H}, \mathcal{R}}(h, r, x) \geqslant \frac{1}{4n}\left(1 - c - p\left(\text{h}\left(x\right)\mid x\right)\right)^2 = \frac{\Delta C_{\text{abst}, \mathcal{H}, \mathcal{R}}(h, r, x)^2}{4n} \]

    \(\Gamma_1 (z) = 2\sqrt{nz}\),于是\(\Delta C_{L_\text{abst}, \mathcal{H}, \mathcal{R}}(h, r, x) \leqslant \Gamma (\Delta C_{L, \mathcal{H}, \mathcal{R}}(h, r, x))\)得证。

  3. \(\max_{y\in \mathcal{Y}} p(y\mid x) \leqslant (1 - c)\)\(r(x) \leqslant 0\)
    由于此时\(\Delta C_{L_\text{abst}, \mathcal{H}, \mathcal{R}}(h, r, x) = 0\),因此\(\Delta C_{L_\text{abst}, \mathcal{H}, \mathcal{R}}(h, r, x) \leqslant \Gamma (\Delta C_{L, \mathcal{H}, \mathcal{R}}(h, r, x))\)对任意\(\Gamma \geqslant 0\)成立。

  4. \(\max_{y\in \mathcal{Y}} p(y\mid x) > (1 - c)\)\(r(x) \leqslant 0\)

    \[\Delta C_{L, \mathcal{H}, \mathcal{R}}(h, r, x) \geqslant n\left(\frac{\max_{y\in \mathcal{Y}}p(y\mid x) - 1 + c}{2}\right)^2 = \frac{n\Delta C_{\text{abst}, \mathcal{H}, \mathcal{R}}(h, r, x)^2}{4} \]

    \(\Gamma_3 (z) = 2\sqrt{z/n}\),于是\(\Delta C_{L_\text{abst}, \mathcal{H}, \mathcal{R}}(h, r, x) \leqslant \Gamma (\Delta C_{L, \mathcal{H}, \mathcal{R}}(h, r, x))\)得证。

综上所述,若取\(\Gamma(z) = \max\{\Gamma_1(z), \Gamma_2(z), \Gamma_3(z)\} = \max\{2\sqrt{nz}, z\}\),则恒有\(\Delta C_{L_\text{abst}, \mathcal{H}, \mathcal{R}}(h, r, x) \leqslant \Gamma (\Delta C_{L, \mathcal{H}, \mathcal{R}}(h, r, x))\)。于是\(\mathcal{l} = \mathcal{l}_{\rho-\text{hinge}}\)\(\psi(z) = nz\)时单阶段代理损失的\((\mathcal{H}, \mathcal{R})\)-一致性界得证。

参考

  • [1] Mao A, Mohri M, Zhong Y. Predictor-rejector multi-class abstention: Theoretical analysis and algorithms[C]//International Conference on Algorithmic Learning Theory. PMLR, 2024: 822-867.
  • [2] Cortes C, DeSalvo G, Mohri M. Boosting with abstention[J]. Advances in Neural Information Processing Systems, 2016, 29.
  • [3] Ni C, Charoenphakdee N, Honda J, et al. On the calibration of multiclass classification with rejection[J]. Advances in Neural Information Processing Systems, 2019, 32.
  • [4] Han Bao: Learning Theory Bridges Loss Functions
  • [5] Crammer K, Singer Y. On the algorithmic implementation of multiclass kernel-based vector machines[J]. Journal of machine learning research, 2001, 2(Dec): 265-292.
  • [6] Awasthi P, Mao A, Mohri M, et al. Multi-Class $ H $-Consistency Bounds[J]. Advances in neural information processing systems, 2022, 35: 782-795.

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/894059.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

element组件学习

vite.config.js点击查看代码 import { fileURLToPath, URL } from node:urlimport { defineConfig } from vite import vue from @vitejs/plugin-vue import vueDevTools from vite-plugin-vue-devtools import AutoImport from unplugin-auto-import/vite import Components f…

SpringCloud学习-熟悉docker

前言:本人练习使用的是阿里云服务器,配置为:一:配置docker镜像加速 由于docker自带的镜像仓库地址速度很慢,甚至国内访问不了,所以需要做下镜像加速设置: # 创建目录 mkdir -p /etc/docker# 复制内容 tee /etc/docker/daemon.json <<-EOF {"registry-mirrors…

IntelliJ IDEA 激活码,免费不收费

IntelliJ IDEA 2020、2021、2022、2023、2024 通用激活,免费激活码,激活码实时更新IntelliJ IDEA 2020、2021、2022、2023、2024通用激活,激活码实时更新 激活码获取方式:扫描关注公众号,回复:激活码 【激活码会即时更新,过期后请重新获取】分享不易,赠人玫瑰,手有余香…

c语言实验1

一、实验目的会使用C语言程序开发环境(vs2010/devc++等),能熟练、正确使用它们编写、编译、运行、调试C程序 知道C程序结构和编码规范,能正确使用 能正确、熟练使用C语言输入输出函数: scanf() , printf() , getchar() , putchar() 能灵活、组合使用基本数据类型、运算符和…

双列集合

介绍双列集合中,每次添加元素添加一对(2个)数值 每对元素之间是一一对应的 最顶层为Map,有三个实现类,如下图双列集合特点 双列集合一次需要存一对数据,分别为键和值 键不能重复,值可以重复 键和值是一一对应的,每一个键只能找到自己对应的值 键+值这个整体 我们称之为…

单列集合

介绍 集合分为两种,一种是单列集合,一种是双列集合单列集合中 List系列集合添加元素是有序,可重复,有索引的 set系列集合添加元素是无序,不可重复,无索引的Collection是单列集合的祖宗接口,所以全部的单列集合都可以使用它的方法Collection基本方法 add方法,添加元素 …

黄河流域水土保持生态效应AI一体化评价平台

黄河流域作为我国北方重要的生态屏障,其生态保护和高质量发展一直是国家战略的重点。随着人工智能技术的飞速发展,黄河流域水土保持生态效应AI一体化评价平台的建设,标志着生态保护工作进入了一个新的阶段。本文将对这一平台的建设内容进行深度分析。1. 平台建设背景与意义黄…

使用PHP+HTML集成DeepSeek API,实现一个简单的聊天对话项目

项目效果预览1. 准备工作PHP环境:确保你的开发环境中安装了PHP。 DeepSeek API密钥:注册并获取DeepSeek API的访问密钥。2. 创建PHP文件,编写API调用脚本 创建一个PHP脚本(api.php),用于调用DeepSeek API。假设API密钥为YOUR_API_KEY。 <?php header(Content-Type: a…

(15)事件处理,表单绑定

可以参考官网https://cn.vuejs.org/guide/essentials/event-handling.html来学习 添加事件,处理事件,传递参数 监听事件​ 我们可以使用 v-on 指令 (简写为 @) 来监听 DOM 事件,并在事件触发时执行对应的 JavaScript。 用法:v-on:click="handler" 或 @click=&quo…

nginx + lua + kafka实现日志监控

nginx + lua + kafka实现日志监控 前言 1)架构图:2)方案:1:线上请求打向nginx后,使用lua完成日志整理:如统一日志格式,过滤无效请求,分组等。 2:根据不同业务的nginx日志,划分不同的topic。 3:lua实现producter异步发送到kafka集群。 4:对不同日志感兴趣的业务组实时消费…

day 17思维导图

图上有知识的补充!

Causal learning

简单来看:Causal learning = To learn causal models/features from dataCausal research 里包括两种重要问题,一种是Causal learning,另一种是Causal reasoning(不同的文献有不同的分法和叫法,这里用Jonas Peters等人的书里的)。简单的说,前者想解决如何从数据中发现因…