Linux学习第41天:Linux SPI 驱动实验(二):乾坤大挪移

Linux版本号4.1.15   芯片I.MX6ULL                                    大叔学Linux    品人间百味  思文短情长 


        本章的思维导图如下:

二、I.MX6U SPI主机驱动分析

       主机驱动一般都是由SOC厂商写好的。不作为重点需要掌握的内容。

三、SPI设备驱动编写流程

1、SPI设备信息描述

1)、IO pinctrl 子节点创建与修改

        根据所使用的 IO 来创建或修改 pinctrl 子节点,检查是否被占用。

2)、SPI 设备节点的创建与修改

308 &ecspi1 {
309 fsl,spi-num-chipselects = <1>;/*设置“ fsl,spi-num-chipselects”属性为 1,表示只有一个设备。*/
310 cs-gpios = <&gpio4 9 0>;/*设置“ cs-gpios”属性,也就是片选信号为 GPIO4_IO09。*/
311 pinctrl-names = "default";*设置“ pinctrl-names”属性,也就是 SPI 设备所使用的 IO 名字。*/
312 pinctrl-0 = <&pinctrl_ecspi1>;/*设置“ pinctrl-0”属性,也就是所使用的 IO 对应的 pinctrl 节点。*/
313 status = "okay";/*将 ecspi1 节点的“ status”属性改为“ okay”。*/
314
315 flash: m25p80@0 {/*ecspi1 下的 m25p80 设备信息,每一个 SPI 设备都采用一个子节点来描述
其设备信息。第 315 行的“ m25p80@0”后面的“ 0”表示 m25p80 的接到了 ECSPI 的通道 0
上。这个要根据自己的具体硬件来设置。*/
316 #address-cells = <1>;
317 #size-cells = <1>;
318 compatible = "st,m25p32";/*SPI 设备的 compatible 属性值,用于匹配设备驱动。*/
319 spi-max-frequency = <20000000>;/*“ spi-max-frequency”属性设置 SPI 控制器的最高频率,这个要根据所使用的
SPI 设备来设置,比如在这里将 SPI 控制器最高频率设置为 20MHz。*/
320 reg = <0>;/* reg 属性设置 m25p80 这个设备所使用的 ECSPI 通道*/
321 };
322 };

        上述代码是 I.MX6Q 的一款板子上的一个 SPI 设备节点,在这个板子的 ECSPI 接口上接了一个 m25p80,这是一个 SPI 接口的设备。


2、SPI设备数据收发处理流程

        spi_transfer 结构体,此结构体用于描述 SPI 传输信息,结构体内容如下:

603 struct spi_transfer {
604 /* it's ok if tx_buf == rx_buf (right?)
605 * for MicroWire, one buffer must be null
606 * buffers must work with dma_*map_single() calls, unless
607 * spi_message.is_dma_mapped reports a pre-existing mapping
608 */
609 const void *tx_buf;/*tx_buf 保存着要发送的数据。*/
610 void *rx_buf;/*rx_buf 用于保存接收到的数据。*/
611 unsigned len;/*len 是要进行传输的数据长度, SPI 是全双工通信,因此在一次通信中发送和
接收的字节数都是一样的,所以 spi_transfer 中也就没有发送长度和接收长度之分。*/
612
613 dma_addr_t tx_dma;
614 dma_addr_t rx_dma;
615 struct sg_table tx_sg;
616 struct sg_table rx_sg;
617
618 unsigned cs_change:1;
619 unsigned tx_nbits:3;
620 unsigned rx_nbits:3;
621 #define SPI_NBITS_SINGLE 0x01 /* 1bit transfer */
622 #define SPI_NBITS_DUAL 0x02 /* 2bits transfer */
623 #define SPI_NBITS_QUAD 0x04 /* 4bits transfer */
624 u8 bits_per_word;
625 u16 delay_usecs;
626 u32 speed_hz;
627
628 struct list_head transfer_list;
629 };

spi_message 也是一个结构体:

660 struct spi_message {
661 struct list_head transfers;
662
663 struct spi_device *spi;
664
665 unsigned is_dma_mapped:1;
......
678 /* completion is reported through a callback */
679 void (*complete)(void *context);
680 void *context;
681 unsigned frame_length;
682 unsigned actual_length;
683 int status;
684
685 /* for optional use by whatever driver currently owns the
686 * spi_message ... between calls to spi_async and then later
687 * complete(), that's the spi_master controller driver.
688 */
689 struct list_head queue;
690 void *state;
691 };

spi_message初始化函数为 spi_message_init,函数原型如下:

void spi_message_init(struct spi_message *m)

        spi_message 初始化完成以后需要将 spi_transfer 添加到 spi_message 队列中,这里要用
到 spi_message_add_tail 函数,此函数原型如下:

void spi_message_add_tail(struct spi_transfer *t, struct spi_message *m)

t: 要添加到队列中的 spi_transfer。
m: spi_transfer 要加入的 spi_message。

        spi_message 准备好以后既可以进行数据传输了,数据传输分为同步传输和异步传输,同步
传输会阻塞的等待 SPI 数据传输完成,同步传输函数为 spi_sync,函数原型如下:

int spi_sync(struct spi_device *spi, struct spi_message *message)

spi: 要进行数据传输的 spi_device。
message:要传输的 spi_message。
返回值: 无。

        异步传输不会阻塞的等到 SPI 数据传输完成,异步传输需要设置 spi_message 中的 complete成员变量, complete 是一个回调函数,当 SPI 异步传输完成以后此函数就会被调用。 SPI 异步传输函数为 spi_async,函数原型如下:

int spi_async(struct spi_device *spi, struct spi_message *message)

spi: 要进行数据传输的 spi_device。
message:要传输的 spi_message。
返回值: 无。
        本次测试,采用同步传输方式来完成 SPI 数据的传输工作,也就是 spi_sync 函数。

        SPI 数据传输步骤如下:

①、申请并初始化 spi_transfer,设置 spi_transfer 的 tx_buf 成员变量, tx_buf 为要发送的数
据。然后设置 rx_buf 成员变量, rx_buf 保存着接收到的数据。最后设置 len 成员变量,也就是
要进行数据通信的长度。
②、使用 spi_message_init 函数初始化 spi_message。
③、使用 spi_message_add_tail函数将前面设置好的 spi_transfer添加到 spi_message队列中。
④、使用 spi_sync 函数完成 SPI 数据同步传输。
 

四、硬件原理图分析

五、实验程序编写

1、修改设备树

1)、添加 ICM20608 所使用的 IO

1 pinctrl_ecspi3: icm20608 {
2 fsl,pins = <
3 MX6UL_PAD_UART2_TX_DATA__GPIO1_IO20 0x10b0 /* CS */
4 MX6UL_PAD_UART2_RX_DATA__ECSPI3_SCLK 0x10b1 /* SCLK */
5 MX6UL_PAD_UART2_RTS_B__ECSPI3_MISO 0x10b1 /* MISO */
6 MX6UL_PAD_UART2_CTS_B__ECSPI3_MOSI 0x10b1 /* MOSI */
7 >;
8 };

2)、在 ecspi3 节点追加 icm20608 子节点
 

1 &ecspi3 {
2 fsl,spi-num-chipselects = <1>;/*当前片选数量为 1*/
3 cs-gpio = <&gpio1 20 GPIO_ACTIVE_LOW>; /* cant't use cs-gpios! *//*用了一个自己定义的“ cs-gpio”属
性*/
4 pinctrl-names = "default";
5 pinctrl-0 = <&pinctrl_ecspi3>;/*设置 IO 要使用的 pinctrl 子节点*/
6 status = "okay";/* imx6ull.dtsi 文件中默认将 ecspi3 节点状态(status)设置为“ disable”,这里我们要将
其改为“ okay”。*/
7
8 spidev: icm20608@0 {/*icm20608 设备子节点,因为 icm20608 连接在 ECSPI3 的第 0 个通道上,因此
@后面为 0。第 9 行设置节点属性兼容值为“ alientek,icm20608”,第 10 行设置 SPI 最大时钟频
率为 8MHz,这是 ICM20608 的 SPI 接口所能支持的最大的时钟频率。第 11 行, icm20608 连接
在通道 0 上,因此 reg 为 0。*/
9 compatible = "alientek,icm20608";
10 spi-max-frequency = <8000000>;
11 reg = <0>;
12 };
13 };

2、编写ICM20608驱动

1)、icm20608 设备结构体创建

        需要注意在 probe 函数中设置 private_data 为 probe 函数传递进来的 spi_device 参数。

void *private_data; /* 私有数据 */

2)、icm20608 spi_driver 注册与注销

1 /* 传统匹配方式 ID 列表 */
2 static const struct spi_device_id icm20608_id[] = {/*第 2~5 行,传统的设备和驱动匹配表。*/
3 {"alientek,icm20608", 0},
4 {}
5 };
6
7 /* 设备树匹配列表 */
8 static const struct of_device_id icm20608_of_match[] = {/*第 8~11 行,设备树的设备与驱动匹配表,这里只有一个匹配项:“ alientek,icm20608”。*/
9 { .compatible = "alientek,icm20608" },
10 { /* Sentinel */ }
11 };
12
13 /* SPI 驱动结构体 */
14 static struct spi_driver icm20608_driver = {/*第 14~23 行, icm20608 的 spi_driver 结构体变量,当 icm20608 设备和此驱动匹配成功以后
第 15 行的 icm20608_probe 函数就会执行。同样的,当注销此驱动的时候 icm20608_remove 函
数会执行。*/
15 .probe = icm20608_probe,
16 .remove = icm20608_remove,
17 .driver = {
18 .owner = THIS_MODULE,
19 .name = "icm20608",
20 .of_match_table = icm20608_of_match,
21 },
22 .id_table = icm20608_id,
23 };
24
25 /*
26 * @description : 驱动入口函数
27 * @param : 无
28 * @return : 无
29 */
30 static int __init icm20608_init(void)/*第 30~33 行, icm20608_init 函数为 icm20608 的驱动入口函数,在此函数中使用
spi_register_driver 向 Linux 系统注册上面定义的 icm20608_driver。*/
31 {
32 return spi_register_driver(&icm20608_driver);
33 }
34
35 /*
36 * @description : 驱动出口函数
37 * @param : 无
38 * @return : 无
39 */
40 static void __exit icm20608_exit(void)/*第 40~43 行, icm20608_exit 函数为 icm20608 的驱动出口函数,在此函数中使用
spi_unregister_driver 注销掉前面注册的 icm20608_driver。*/
41 {
42 spi_unregister_driver(&icm20608_driver);
43 }
44
45 module_init(icm20608_init);
46 module_exit(icm20608_exit);
47 MODULE_LICENSE("GPL");
48 MODULE_AUTHOR("zuozhongkai");

3)、probe&remove 函数

8 static int icm20608_probe(struct spi_device *spi)
9 {
10 int ret = 0;
11
12 /* 1、构建设备号 */
13 if (icm20608dev.major) {
14 icm20608dev.devid = MKDEV(icm20608dev.major, 0);
15 register_chrdev_region(icm20608dev.devid, ICM20608_CNT,
ICM20608_NAME);
16 } else {
17 alloc_chrdev_region(&icm20608dev.devid, 0, ICM20608_CNT,
ICM20608_NAME);
18 icm20608dev.major = MAJOR(icm20608dev.devid);
19 }
20
21 /* 2、注册设备 */
22 cdev_init(&icm20608dev.cdev, &icm20608_ops);
23 cdev_add(&icm20608dev.cdev, icm20608dev.devid, ICM20608_CNT);
24
25 /* 3、创建类 */
26 icm20608dev.class = class_create(THIS_MODULE, ICM20608_NAME);
27 if (IS_ERR(icm20608dev.class)) {
28 return PTR_ERR(icm20608dev.class);
29 }
30
31 /* 4、创建设备 */
32 icm20608dev.device = device_create(icm20608dev.class, NULL,
icm20608dev.devid, NULL, ICM20608_NAME);
33 if (IS_ERR(icm20608dev.device)) {
34 return PTR_ERR(icm20608dev.device);
35 }
36
37 /* 获取设备树中 cs 片选信号 */
38 icm20608dev.nd = of_find_node_by_path("/soc/aips-bus@02000000/
spba-bus@02000000/ecspi@02010000");
39 if(icm20608dev.nd == NULL) {
40 printk("ecspi3 node not find!\r\n");
41 return -EINVAL;
42 }
43
44 /* 2、 获取设备树中的 gpio 属性,得到 CS 片选所使用的 GPIO 编号 */
45 icm20608dev.cs_gpio = of_get_named_gpio(icm20608dev.nd,
"cs-gpio", 0);
46 if(icm20608dev.cs_gpio < 0) {
47 printk("can't get cs-gpio");
48 return -EINVAL;
49 }
50
51 /* 3、设置 GPIO1_IO20 为输出,并且输出高电平 */
52 ret = gpio_direction_output(icm20608dev.cs_gpio, 1);
53 if(ret < 0) {
54 printk("can't set gpio!\r\n");
55 }
56
57 /*初始化 spi_device */
58 spi->mode = SPI_MODE_0; /*MODE0, CPOL=0, CPHA=0 */
59 spi_setup(spi);
60 icm20608dev.private_data = spi; /* 设置私有数据 */
61
62 /* 初始化 ICM20608 内部寄存器 */
63 icm20608_reginit();
64 return 0;
65 }

        probe 函数,当设备与驱动匹配成功以后此函数就会执行,第 13~55 行都是标
准的注册字符设备驱动。其中在第 38~49 行获取设备节点中的“ cs-gpio”属性,也就是获取到
设备的片选 IO。

57 /*初始化 spi_device */
58 spi->mode = SPI_MODE_0; /*MODE0, CPOL=0, CPHA=0 *//*设置 SPI 为模式 0,也就是 CPOL=0, CPHA=0。*/
59 spi_setup(spi);/*设置好 spi_device 以后需要使用 spi_setup 配置一下。*/
60 icm20608dev.private_data = spi; /* 设置私有数据 *//*设置 icm20608dev 的 private_data 成员变量为 spi_device。*/
61
62 /* 初始化 ICM20608 内部寄存器 */
63 icm20608_reginit();/*调用 icm20608_reginit 函数初始化 ICM20608,主要是初始化 ICM20608 指定寄
存器。*/
64 return 0;
65 }
66
67 /*
68 * @description : spi 驱动的 remove 函数,移除 spi 驱动的时候此函数会执行
69 * @param – client : spi 设备
70 * @return : 0,成功;其他负值,失败
71 *//*icm20608_remove 函数,注销驱动的时候此函数就会执行。*/
72 static int icm20608_remove(struct spi_device *spi)
73 {
74 /* 删除设备 */
75 cdev_del(&icm20608dev.cdev);
76 unregister_chrdev_region(icm20608dev.devid, ICM20608_CNT);
77
78 /* 注销掉类和设备 */
79 device_destroy(icm20608dev.class, icm20608dev.devid);
80 class_destroy(icm20608dev.class);
81 return 0;
82 }

4)、icm20608 寄存器读写与初始化

1 /*
2 * @description : 从 icm20608 读取多个寄存器数据
3 * @param – dev : icm20608 设备
4 * @param – reg : 要读取的寄存器首地址
5 * @param – val : 读取到的数据
6 * @param – len : 要读取的数据长度
7 * @return : 操作结果
8 */
9 static int icm20608_read_regs(struct icm20608_dev *dev, u8 reg,
void *buf, int len)
10 {
11 int ret;
12 unsigned char txdata[len];
13 struct spi_message m;
14 struct spi_transfer *t;
15 struct spi_device *spi = (struct spi_device *)dev->private_data;
16
17 gpio_set_value(dev->cs_gpio, 0); /* 片选拉低,选中 ICM20608 */
18 t = kzalloc(sizeof(struct spi_transfer), GFP_KERNEL);
19
20 /* 第 1 次,发送要读取的寄存地址 */
21 txdata[0] = reg | 0x80; /* 写数据的时候寄存器地址 bit7 要置 1 */
22 t->tx_buf = txdata; /* 要发送的数据 */
23 t->len = 1; /* 1 个字节 */
24 spi_message_init(&m); /* 初始化 spi_message */
25 spi_message_add_tail(t, &m);/* 将 spi_transfer 添加到 spi_message */
26 ret = spi_sync(spi, &m); /* 同步发送 */
27
28 /* 第 2 次,读取数据 */
29 txdata[0] = 0xff; /* 随便一个值,此处无意义 */
30 t->rx_buf = buf; /* 读取到的数据 */
31 t->len = len; /* 要读取的数据长度 */
原子哥在线教学:www.yuanzige.com 论坛:www.openedv.com
1467
I.MX6U 嵌入式 Linux 驱动开发指南
32 spi_message_init(&m); /* 初始化 spi_message */
33 spi_message_add_tail(t, &m);/* 将 spi_transfer 添加到 spi_message*/
34 ret = spi_sync(spi, &m); /* 同步发送 */
35
36 kfree(t); /* 释放内存 */
37 gpio_set_value(dev->cs_gpio, 1); /* 片选拉高,释放 ICM20608 */
38
39 return ret;
40 }
41
42 /*
43 * @description : 向 icm20608 多个寄存器写入数据
44 * @param – dev : icm20608 设备
45 * @param – reg : 要写入的寄存器首地址
46 * @param – val : 要写入的数据缓冲区
47 * @param – len : 要写入的数据长度
48 * @return : 操作结果
49 */
50 static s32 icm20608_write_regs(struct icm20608_dev *dev, u8 reg,
u8 *buf, u8 len)
51 {
52 int ret;
53
54 unsigned char txdata[len];
55 struct spi_message m;
56 struct spi_transfer *t;
57 struct spi_device *spi = (struct spi_device *)dev->private_data;
58
59 t = kzalloc(sizeof(struct spi_transfer), GFP_KERNEL);
60 gpio_set_value(dev->cs_gpio, 0); /* 片选拉低 */
61
62 /* 第 1 次,发送要读取的寄存地址 */
63 txdata[0] = reg & ~0x80; /* 写数据的时候寄存器地址 bit8 要清零 */
64 t->tx_buf = txdata; /* 要发送的数据 */
65 t->len = 1; /* 1 个字节 */
66 spi_message_init(&m); /* 初始化 spi_message */
67 spi_message_add_tail(t, &m);/* 将 spi_transfer 添加到 spi_message */
68 ret = spi_sync(spi, &m); /* 同步发送 */
69
70 /* 第 2 次,发送要写入的数据 */
71 t->tx_buf = buf; /* 要写入的数据 */
72 t->len = len; /* 写入的字节数 */
73 spi_message_init(&m); /* 初始化 spi_message */
74 spi_message_add_tail(t, &m);/* 将 spi_transfer 添加到 spi_message*/
75 ret = spi_sync(spi, &m); /* 同步发送 */
76
77 kfree(t); /* 释放内存 */
78 gpio_set_value(dev->cs_gpio, 1);/* 片选拉高,释放 ICM20608 */
79 return ret;
80 }
81
82 /*
83 * @description : 读取 icm20608 指定寄存器值,读取一个寄存器
84 * @param – dev : icm20608 设备
85 * @param – reg : 要读取的寄存器
86 * @return : 读取到的寄存器值
87 */
88 static unsigned char icm20608_read_onereg(struct icm20608_dev *dev,
u8 reg)
89 {
90 u8 data = 0;
91 icm20608_read_regs(dev, reg, &data, 1);
92 return data;
93 }
94
95 /*
96 * @description : 向 icm20608 指定寄存器写入指定的值,写一个寄存器
97 * @param – dev : icm20608 设备
98 * @param – reg : 要写的寄存器
99 * @param – data : 要写入的值
100 * @return : 无
101 */
102
103 static void icm20608_write_onereg(struct icm20608_dev *dev, u8 reg,
u8 value)
104 {
105 u8 buf = value;
106 icm20608_write_regs(dev, reg, &buf, 1);
107 }
108
109 /*
110 * @description : 读取 ICM20608 的数据,读取原始数据,包括三轴陀螺仪、
111 * : 三轴加速度计和内部温度。
112 * @param - dev : ICM20608 设备
113 * @return : 无。
114 */
115 void icm20608_readdata(struct icm20608_dev *dev)
116 {
117 unsigned char data[14];
118 icm20608_read_regs(dev, ICM20_ACCEL_XOUT_H, data, 14);
119
120 dev->accel_x_adc = (signed short)((data[0] << 8) | data[1]);
121 dev->accel_y_adc = (signed short)((data[2] << 8) | data[3]);
122 dev->accel_z_adc = (signed short)((data[4] << 8) | data[5]);
123 dev->temp_adc = (signed short)((data[6] << 8) | data[7]);
124 dev->gyro_x_adc = (signed short)((data[8] << 8) | data[9]);
125 dev->gyro_y_adc = (signed short)((data[10] << 8) | data[11]);
126 dev->gyro_z_adc = (signed short)((data[12] << 8) | data[13]);
127 }
128 /*
129 * ICM20608 内部寄存器初始化函数
130 * @param : 无
131 * @return : 无
132 */
133 void icm20608_reginit(void)
134 {
135 u8 value = 0;
136
137 icm20608_write_onereg(&icm20608dev, ICM20_PWR_MGMT_1, 0x80);
138 mdelay(50);
139 icm20608_write_onereg(&icm20608dev, ICM20_PWR_MGMT_1, 0x01);
140 mdelay(50);
141
142 value = icm20608_read_onereg(&icm20608dev, ICM20_WHO_AM_I);
143 printk("ICM20608 ID = %#X\r\n", value);
144
145 icm20608_write_onereg(&icm20608dev, ICM20_SMPLRT_DIV, 0x00);
146 icm20608_write_onereg(&icm20608dev, ICM20_GYRO_CONFIG, 0x18);
147 icm20608_write_onereg(&icm20608dev, ICM20_ACCEL_CONFIG, 0x18);
148 icm20608_write_onereg(&icm20608dev, ICM20_CONFIG, 0x04);
149 icm20608_write_onereg(&icm20608dev, ICM20_ACCEL_CONFIG2, 0x04);
150 icm20608_write_onereg(&icm20608dev, ICM20_PWR_MGMT_2, 0x00);
151 icm20608_write_onereg(&icm20608dev, ICM20_LP_MODE_CFG, 0x00);
152 icm20608_write_onereg(&icm20608dev, ICM20_FIFO_EN, 0x00);
153 }

5)、字符设备驱动框架

        重点是第 22~38 行的 icm20608_read 函数,当应用程序调用 read 函数读取 icm20608 设备文件的时候此函数就会执行。此函数调用上面编写好的icm20608_readdata 函数读取 icm20608 的原始数据并将其上报给应用程序。

3、编写测试APP

32 int main(int argc, char *argv[])
33 {
34 int fd;
35 char *filename;
36 signed int databuf[7];
37 unsigned char data[14];
38 signed int gyro_x_adc, gyro_y_adc, gyro_z_adc;
39 signed int accel_x_adc, accel_y_adc, accel_z_adc;
40 signed int temp_adc;
41
42 float gyro_x_act, gyro_y_act, gyro_z_act;
43 float accel_x_act, accel_y_act, accel_z_act;
44 float temp_act;
45
46 int ret = 0;
47
48 if (argc != 2) {
49 printf("Error Usage!\r\n");
50 return -1;
51 }
52
53 filename = argv[1];
54 fd = open(filename, O_RDWR);
55 if(fd < 0) {
原子哥在线教学:www.yuanzige.com 论坛:www.openedv.com
1473
I.MX6U 嵌入式 Linux 驱动开发指南
56 printf("can't open file %s\r\n", filename);
57 return -1;
58 }
59
60 while (1) {
61 ret = read(fd, databuf, sizeof(databuf));
62 if(ret == 0) { /* 数据读取成功 */
63 gyro_x_adc = databuf[0];
64 gyro_y_adc = databuf[1];
65 gyro_z_adc = databuf[2];
66 accel_x_adc = databuf[3];
67 accel_y_adc = databuf[4];
68 accel_z_adc = databuf[5];
69 temp_adc = databuf[6];
70
71 /* 计算实际值 */
72 gyro_x_act = (float)(gyro_x_adc) / 16.4;
73 gyro_y_act = (float)(gyro_y_adc) / 16.4;
74 gyro_z_act = (float)(gyro_z_adc) / 16.4;
75 accel_x_act = (float)(accel_x_adc) / 2048;
76 accel_y_act = (float)(accel_y_adc) / 2048;
77 accel_z_act = (float)(accel_z_adc) / 2048;
78 temp_act = ((float)(temp_adc) - 25 ) / 326.8 + 25;
79
80 printf("\r\n 原始值:\r\n");
81 printf("gx = %d, gy = %d, gz = %d\r\n", gyro_x_adc,
gyro_y_adc, gyro_z_adc);
82 printf("ax = %d, ay = %d, az = %d\r\n", accel_x_adc,
accel_y_adc, accel_z_adc);
83 printf("temp = %d\r\n", temp_adc);
84 printf("实际值:");
85 printf("act gx = %.2f°/S, act gy = %.2f°/S,
act gz = %.2f°/S\r\n", gyro_x_act, gyro_y_act,
gyro_z_act);
86 printf("act ax = %.2fg, act ay = %.2fg,
act az = %.2fg\r\n", accel_x_act, accel_y_act,
accel_z_act);
87 printf("act temp = %.2f°C\r\n", temp_act);
88 }
89 usleep(100000); /*100ms */
90 }
91 close(fd); /* 关闭文件 */
92 return 0;
93 }

六、运行测试

1、编译驱动程序和测试APP

1)、编译驱动程序

1 KERNELDIR := /home/zuozhongkai/linux/IMX6ULL/linux/temp/linux-imxrel_imx_4.1.15_2.1.0_ga_alientek
......
4 obj-m := icm20608.o
......
11 clean:
12 $(MAKE) -C $(KERNELDIR) M=$(CURRENT_PATH) clean

第 4 行,设置 obj-m 变量的值为“ icm20608.o”。
输入如下命令编译出驱动模块文件:
make -j32
编译成功以后就会生成一个名为“ icm20608.ko”的驱动模块文件。


2)、编译测试APP

在编译的时候加入如下参数即可:
-march-armv7-a -mfpu-neon -mfloat=hard
输入如下命令使能硬件浮点编译 icm20608App.c 这个测试程序:
arm-linux-gnueabihf-gcc -march=armv7-a -mfpu=neon -mfloat-abi=hard icm20608App.c -o
icm20608App
 

2、运行测试

        输入如下命令加载 icm20608.ko 这个驱动模块。
depmod //第一次加载驱动的时候需要运行此命令
modprobe icm20608.ko //加载驱动模块
        当驱动模块加载成功以后使用 icm20608App 来测试,输入如下命令:
./icm20608App /dev/icm20608
        测试 APP 会不断的从 ICM20608 中读取数据,然后输出到终端上

七、总结

        本节的内容较多,可以分成两天进行学习。主要学习了SPI驱动开发及运行测试的相关内容。


本文为参考正点原子开发板配套教程整理而得,仅用于学习交流使用,不得用于商业用途。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/178938.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Oracle(17)Managing Roles

目录 一、基础知识 1、基础介绍 2、Predefined Roles 预定义的角色 3、各种角色的介绍 二、基础操作 1、创建角色 2、修改用户默认role 3、回收role 4、删除role 5、为角色授权 6、授予角色给用户 7、查看用户包含的角色&#xff1a; 8、查看角色所包含的权限 9、…

SpringBoot和Spring源码下载

1.下载&#xff1a;在一个空的干净地创建一个文件夹叫springsourcecode&#xff0c;其实叫什么都行的。 git clone https://github.com/spring-projects/spring-framework.git 2.JDK要和gradle匹配 我们要21的&#xff0c;今天为止2023年11月13日&#xff0c;idea是2023.2。 …

kubernetes集群编排(12)

目录 istio 部署 部署示例应用 部署遥测组件 流量管理 熔断 istio 官网&#xff1a;https://istio.io/latest/zh/about/service-mesh/ 部署 demo专为测试准备的功能集合 [rootk8s2 ~]# tar zxf istio-1.19.3-linux-amd64.tar.gz [rootk8s2 ~]# cd istio-1.19.3/ [rootk8s2 isti…

磁盘阵列之RAID

一、RAID介绍 RAID(Redundant Array of Independent Disk 独立冗余磁盘阵列)技术是加州大学伯克利分校1987年提出&#xff0c;最初是为了组合小的廉价磁盘来代替大的昂贵磁盘&#xff0c;同时希望磁盘失效时不会使对数据的访问受损失而开发出一定水平的数据保护技术。RAID就是…

Mahony 滤波算法参数自动调节方法 11

Mahony 滤波算法参数自动调节方法 1. 基于无阻尼自由频率设计设置Kp、Ki参数[^1]2.基于时间常数设置Kp&#xff0c; Ki参数[^2][^3] 1. 基于无阻尼自由频率设计设置Kp、Ki参数1 2.基于时间常数设置Kp&#xff0c; Ki参数23 Gain-Scheduled Complementary Filter Design for a M…

Mac M3 芯片安装 Nginx

Mac M3 芯片安装 Nginx 一、使用 brew 安装 未安装 brew 的可以参考 【Mac 安装 Homebrew】 或者 【Mac M2/M3 芯片环境配置以及常用软件安装-前端】 二、查看 nginx 信息 通过命令行查看 brew info nginx可以看到 nginx 还未在本地安装&#xff0c;显示 Not installed …

Visual Studio Code配置c/c++环境

Visual Studio Code配置c/c环境 1.创建项目目录2.vscode打开项目目录3.项目中添加文件4.文件内容5.配置编译器6.配置构建任务7.配置调试设置 1.创建项目目录 d:\>mkdir d:\c语言项目\test012.vscode打开项目目录 3.项目中添加文件 4.文件内容 #include <iostream> u…

什么是美颜SDK?美颜SDK对比评测

美颜SDK在视频直播中发挥着越来越重要的作用。为了实现实时、高质量的美颜效果&#xff0c;各种视频直播美颜SDK应运而生。本文将对这些技术进行深入解析与比较。 一、技术原理解析 深度学习技术通过大量的训练数据学习人脸特征&#xff0c;从而实现更为自然的美颜效果。传统…

【Unity细节】Failed importing package???Unity导包失败?

&#x1f468;‍&#x1f4bb;个人主页&#xff1a;元宇宙-秩沅 hallo 欢迎 点赞&#x1f44d; 收藏⭐ 留言&#x1f4dd; 加关注✅! 本文由 秩沅 原创 &#x1f636;‍&#x1f32b;️收录于专栏&#xff1a;unity细节和bug &#x1f636;‍&#x1f32b;️优质专栏 ⭐【…

【UE5】显示或隐藏物体轮廓线

效果 步骤 1. 先下载所需的材质文件“M_Highlight.uasset” 材质下载链接&#xff1a; 链接&#xff1a;https://pan.baidu.com/s/1rxmRhkUoXVq6-DkIKyBhAQ 提取码&#xff1a;55bv 2. 在视口中拖入后期处理体积 根据需求设置后期处理体积的大小或者直接设置无限范围&…

软件自动化测试代码覆盖率

在<professional software testing with visual studio 2005 team system tools for software developer>中提到了代码覆盖率&#xff0c;我很久没有去书店了&#xff0c;不知道是不是出了新的版本&#xff0c;觉得书里面关于代码覆盖率方面的知识有些地方没有讲&#xf…

程序员进阶之路,该怎么走?

时代洪流&#xff0c;大浪淘沙。 逆水行舟&#xff0c;不进则退。 如果你游的速度慢于水流&#xff0c;要么你就是被剩下的沙子&#xff0c;要么就是即将被打翻的行舟了。。。 身为程序员时刻保持危机感&#xff0c;然后陷入内卷...... 卷又卷不赢&#xff0c;躺又躺不平。 …