e2studio开发LPS28DFW气压计(1)----轮询获取气压计数据

e2studio开发LPS28DFW气压计.1--轮询获取气压计数据

  • 概述
  • 视频教学
  • 样品申请
  • 完整代码下载
  • 产品特性
  • 通信模式
  • 速率
  • 新建工程
  • 工程模板
  • 保存工程路径
  • 芯片配置
  • 工程模板选择
  • 时钟设置
  • UART配置
  • UART属性配置
  • 设置e2studio堆栈
  • e2studio的重定向printf设置
  • R_SCI_UART_Open()函数原型
  • 回调函数user_uart_callback ()
  • printf输出重定向到串口
  • IIC属性配置
  • IIC配置
  • R_IIC_MASTER_Open()函数原型
  • R_IIC_MASTER_Write()函数原型
  • R_IIC_MASTER_Read()函数原型
  • sci_i2c_master_callback()回调函数
  • SA0地址设置
  • 参考程序
  • SA0设置模块地址
  • 获取ID
  • 复位操作
  • BDU设置
  • 设置总线接口
  • 设置速率
  • 中断配置
  • 轮询读取数据
  • 演示
  • 主程序

概述

本文将介绍如何使用 LPS28DFW 传感器来读取数据。主要步骤包括初始化传感器接口、验证设备ID、配置传感器的数据输出率和滤波器,以及通过轮询方式持续读取气压数据和温度数据。读取到的数据会被转换为适当的单位并通过串行通信输出。
最近在弄ST和瑞萨RA的课程,需要样片的可以加群申请:615061293 。
在这里插入图片描述

视频教学

https://www.bilibili.com/video/BV1ti4y1q7Cy/

e2studio开发LPS28DFW气压计(1)----轮询获取气压计数据

样品申请

https://www.wjx.top/vm/OhcKxJk.aspx#

完整代码下载

https://download.csdn.net/download/qq_24312945/88715394

产品特性

LPS28DFW 是一款高性能的压阻式绝对压力传感器,设计用于提供精确的气压测量。这款传感器特别适合于个人电子和消费类产品,因为它结合了多种先进特性。该传感器以其低功耗和低噪声性能著称,使其在电池供电的便携设备中尤为理想。
LPS28DFW 的封装为陶瓷 LGA 类型,带有金属盖,这种设计既提供了水阻性能,又保持了灵活性,金属盖可以接地或在电路板布局中保持电气浮动。这款传感器能够在 -40°C 至 +85°C 的温度范围内稳定运作,确保在多种环境条件下的可靠性。
此外,它提供两种全尺度的绝对压力测量模式,精度高达 0.5 hPa,配合低至 0.32 Pa 的传感器噪声。内嵌的温度补偿功能进一步增强了其测量准确性。LPS28DFW 还支持高达 200 Hz 的可调输出数据速率 (ODR) 和 24 位的压力数据输出。

通信模式

对于LPS28DFW,可以使用IIC进行通讯。
最小系统图如下所示。
在这里插入图片描述

本文使用的板子原理图如下所示。

在这里插入图片描述

速率

该模块支持的I2C速度最快位快速模式+(1M)。
在这里插入图片描述

新建工程

在这里插入图片描述

工程模板

在这里插入图片描述

保存工程路径

在这里插入图片描述

芯片配置

本文中使用R7FA4M2AD3CFL来进行演示。
在这里插入图片描述

工程模板选择

在这里插入图片描述

时钟设置

开发板上的外部高速晶振为12M.

在这里插入图片描述
需要修改XTAL为12M。

在这里插入图片描述

UART配置

在这里插入图片描述
点击Stacks->New Stack->Driver->Connectivity -> UART Driver on r_sci_uart。
在这里插入图片描述

UART属性配置

在这里插入图片描述

设置e2studio堆栈

printf函数通常需要设置堆栈大小。这是因为printf函数在运行时需要使用栈空间来存储临时变量和函数调用信息。如果堆栈大小不足,可能会导致程序崩溃或不可预期的行为。
printf函数使用了可变参数列表,它会在调用时使用栈来存储参数,在函数调用结束时再清除参数,这需要足够的栈空间。另外printf也会使用一些临时变量,如果栈空间不足,会导致程序崩溃。
因此,为了避免这类问题,应该根据程序的需求来合理设置堆栈大小。

在这里插入图片描述

e2studio的重定向printf设置

在这里插入图片描述
在嵌入式系统的开发中,尤其是在使用GNU编译器集合(GCC)时,–specs 参数用于指定链接时使用的系统规格(specs)文件。这些规格文件控制了编译器和链接器的行为,尤其是关于系统库和启动代码的链接。–specs=rdimon.specs 和 --specs=nosys.specs 是两种常见的规格文件,它们用于不同的场景。
–specs=rdimon.specs
用途: 这个选项用于链接“Redlib”库,这是为裸机(bare-metal)和半主机(semihosting)环境设计的C库的一个变体。半主机环境是一种特殊的运行模式,允许嵌入式程序通过宿主机(如开发PC)的调试器进行输入输出操作。
应用场景: 当你需要在没有完整操作系统的环境中运行程序,但同时需要使用调试器来处理输入输出(例如打印到宿主机的终端),这个选项非常有用。
特点: 它提供了一些基本的系统调用,通过调试接口与宿主机通信。
–specs=nosys.specs
用途: 这个选项链接了一个非常基本的系统库,这个库不提供任何系统服务的实现。
应用场景: 适用于完全的裸机程序,其中程序不执行任何操作系统调用,比如不进行文件操作或者系统级输入输出。
特点: 这是一个更“裸”的环境,没有任何操作系统支持。使用这个规格文件,程序不期望有操作系统层面的任何支持。
如果你的程序需要与宿主机进行交互(如在开发期间的调试),并且通过调试器进行基本的输入输出操作,则使用 --specs=rdimon.specs。
如果你的程序是完全独立的,不需要任何形式的操作系统服务,包括不进行任何系统级的输入输出,则使用 --specs=nosys.specs。
在这里插入图片描述

R_SCI_UART_Open()函数原型

在这里插入图片描述

故可以用 R_SCI_UART_Open()函数进行配置,开启和初始化UART。

 /* Open the transfer instance with initial configuration. */err = R_SCI_UART_Open(&g_uart9_ctrl, &g_uart9_cfg);assert(FSP_SUCCESS == err);

回调函数user_uart_callback ()

当数据发送的时候,可以查看UART_EVENT_TX_COMPLETE来判断是否发送完毕。

在这里插入图片描述
在这里插入图片描述

可以检查检查 “p_args” 结构体中的 “event” 字段的值是否等于 “UART_EVENT_TX_COMPLETE”。如果条件为真,那么 if 语句后面的代码块将会执行。

fsp_err_t err = FSP_SUCCESS;
volatile bool uart_send_complete_flag = false;
void user_uart_callback (uart_callback_args_t * p_args)
{if(p_args->event == UART_EVENT_TX_COMPLETE){uart_send_complete_flag = true;}
}

printf输出重定向到串口

打印最常用的方法是printf,所以要解决的问题是将printf的输出重定向到串口,然后通过串口将数据发送出去。
注意一定要加上头文件#include <stdio.h>

#ifdef __GNUC__                                 //串口重定向#define PUTCHAR_PROTOTYPE int __io_putchar(int ch)
#else#define PUTCHAR_PROTOTYPE int fputc(int ch, FILE *f)
#endifPUTCHAR_PROTOTYPE
{err = R_SCI_UART_Write(&g_uart9_ctrl, (uint8_t *)&ch, 1);if(FSP_SUCCESS != err) __BKPT();while(uart_send_complete_flag == false){}uart_send_complete_flag = false;return ch;
}int _write(int fd,char *pBuffer,int size)
{for(int i=0;i<size;i++){__io_putchar(*pBuffer++);}return size;
}

IIC属性配置

查看手册,可以得知LPS28DFW的IIC地址为“1011100” 或者 “1011101”,即0x5C或0x5D。

在这里插入图片描述

IIC配置

配置RA4M2的I2C接口,使其作为I2C master进行通信。
查看开发板原理图,对应的IIC为P407和P408。
在这里插入图片描述
点击Stacks->New Stack->Connectivity -> I2C Master(r_iic_master)。

在这里插入图片描述

设置IIC的配置,需要注意从机的地址。

在这里插入图片描述

R_IIC_MASTER_Open()函数原型

R_IIC_MASTER_Open()函数为执行IIC初始化,开启配置如下所示。

    /* Initialize the I2C module */err = R_IIC_MASTER_Open(&g_i2c_master0_ctrl, &g_i2c_master0_cfg);/* Handle any errors. This function should be defined by the user. */assert(FSP_SUCCESS == err);

R_IIC_MASTER_Write()函数原型

在这里插入图片描述
R_IIC_MASTER_Write()函数是向IIC设备中写入数据,写入格式如下所示。

    err = R_IIC_MASTER_Write(&g_i2c_master0_ctrl, &reg, 1, true);assert(FSP_SUCCESS == err);

R_IIC_MASTER_Read()函数原型

在这里插入图片描述

R_SCI_I2C_Read()函数是向IIC设备中读取数据,读取格式如下所示。

    /* Read data from I2C slave */err = R_IIC_MASTER_Read(&g_i2c_master0_ctrl, bufp, len, false);assert(FSP_SUCCESS == err);

sci_i2c_master_callback()回调函数

对于数据是否发送完毕,可以查看是否获取到I2C_MASTER_EVENT_TX_COMPLETE字段。

在这里插入图片描述

/* Callback function */
i2c_master_event_t i2c_event = I2C_MASTER_EVENT_ABORTED;
uint32_t  timeout_ms = 100000;
void sci_i2c_master_callback(i2c_master_callback_args_t *p_args)
{i2c_event = I2C_MASTER_EVENT_ABORTED;if (NULL != p_args){/* capture callback event for validating the i2c transfer event*/i2c_event = p_args->event;}
}

SA0地址设置

通过设置SA0管脚的高低电平可以改变模块的地址。

在这里插入图片描述
这里设置SA0管脚位输出管脚。

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

参考程序

https://github.com/STMicroelectronics/lps28dfw-pid

SA0设置模块地址

使能SA0为低电平,配置模块地址。

在这里插入图片描述

  lps28dfw_pin_int_route_t int_route;lps28dfw_all_sources_t all_sources;lps28dfw_bus_mode_t bus_mode;lps28dfw_stat_t status;stmdev_ctx_t dev_ctx;lps28dfw_id_t id;lps28dfw_md_t md;/* Initialize mems driver interface */dev_ctx.write_reg = platform_write;dev_ctx.read_reg = platform_read;dev_ctx.handle = &SENSOR_BUS;HAL_GPIO_WritePin(SA0_GPIO_Port, SA0_Pin, GPIO_PIN_RESET);/* Wait sensor boot time */platform_delay(BOOT_TIME);

获取ID

可以向WHO_AM_I (0Fh)获取固定值,判断是否为0xB4
在这里插入图片描述

lps28dfw_id_get为获取函数。

在这里插入图片描述

对应的获取ID驱动程序,如下所示。

  /* Check device ID */lps28dfw_id_get(&dev_ctx, &id);printf("LPS28DFW_ID=0x%x,id.whoami=0x%x\n",LPS28DFW_ID,id.whoami);	if (id.whoami != LPS28DFW_ID)while(1);

复位操作

lps28dfw_init_set为重置函数。

在这里插入图片描述

对应的驱动程序,如下所示。

 /* Restore default configuration */lps28dfw_init_set(&dev_ctx, LPS28DFW_RESET);do {lps28dfw_status_get(&dev_ctx, &status);} while (status.sw_reset);

BDU设置

在很多传感器中,数据通常被存储在输出寄存器中,这些寄存器分为两部分:MSB和LSB。这两部分共同表示一个完整的数据值。例如,在一个加速度计中,MSB和LSB可能共同表示一个加速度的测量值。
连续更新模式(BDU = ‘0’):在默认模式下,输出寄存器的值会持续不断地被更新。这意味着在你读取MSB和LSB的时候,寄存器中的数据可能会因为新的测量数据而更新。这可能导致一个问题:当你读取MSB时,如果寄存器更新了,接下来读取的LSB可能就是新的测量值的一部分,而不是与MSB相对应的值。这样,你得到的就是一个“拼凑”的数据,它可能无法准确代表任何实际的测量时刻。
块数据更新(BDU)模式(BDU = ‘1’):当激活BDU功能时,输出寄存器中的内容不会在读取MSB和LSB之间更新。这就意味着一旦开始读取数据(无论是先读MSB还是LSB),寄存器中的那一组数据就被“锁定”,直到两部分都被读取完毕。这样可以确保你读取的MSB和LSB是同一测量时刻的数据,避免了读取到代表不同采样时刻的数据。
简而言之,BDU位的作用是确保在读取数据时,输出寄存器的内容保持稳定,从而避免读取到拼凑或错误的数据。这对于需要高精度和稳定性的应用尤为重要。
可以向CFG_REG_C (62h)的BDU寄存器写入1进行开启。

在这里插入图片描述

对应的驱动程序,如下所示。

  /* Set bdu and if_inc recommended for driver usage */lps28dfw_init_set(&dev_ctx, LPS28DFW_DRV_RDY);

设置总线接口

  /* Select bus interface */bus_mode.filter = LPS28DFW_AUTO;bus_mode.interface = LPS28DFW_SEL_BY_HW;lps28dfw_bus_mode_set(&dev_ctx, &bus_mode);

设置速率

设置速率和量程可以通过CTRL_REG1 (10h)和CTRL_REG2 (11h)进行设置。

在这里插入图片描述

在这里插入图片描述

  /* Set Output Data Rate */md.odr = LPS28DFW_4Hz;md.avg = LPS28DFW_16_AVG;md.lpf = LPS28DFW_LPF_ODR_DIV_4;md.fs = LPS28DFW_1260hPa;lps28dfw_mode_set(&dev_ctx, &md);

中断配置

CTRL_REG4 (13h) 寄存器在 LPS28DFW 气压传感器中用于控制与中断相关的不同功能。以下是具体的位字段及其功能:

  1. DRDY_PLS (位 6):在 INT_DRDY 引脚上启用数据就绪脉冲。默认值为 0(0:禁用;1:启用在 INT_DRDY 引脚上的数据就绪脉冲,脉冲宽度约 5 微秒)。
  2. DRDY (位 5):在 INT_DRDY 引脚上的数据就绪信号。默认值为 0(0:禁用;1:启用)。
  3. INT_EN (位 4):在 INT_DRDY 引脚上的中断信号。默认值为 0(0:禁用;1:启用)。
  4. INT_F_FULL (位 2):在 INT_DRDY 引脚上的 FIFO 满标志。默认值为 0(0:FIFO 为空;1:FIFO 满,有 128 个未读样本)。
  5. INT_F_WTM (位 1):在 INT_DRDY 引脚上的 FIFO 阈值(水位标记)状态。默认值为 0(0:FIFO 低于 WTM 级别;1:FIFO 等于或高于 WTM 级别)。
  6. INT_F_OVR (位 0):在 INT_DRDY 引脚上的 FIFO 溢出状态。默认值为 0(0:未溢出;1:FIFO 中至少有一个样本被覆盖)。
    这些设置允许用户配置传感器的中断行为,包括数据就绪通知、FIFO 相关的状态通知等。通过正确配置这些位,可以根据特定的应用需求调整传感器的行为,优化数据采集和处理效率。

在这里插入图片描述

  /* Configure inerrupt pins */lps28dfw_pin_int_route_get(&dev_ctx, &int_route);int_route.drdy_pres   = PROPERTY_DISABLE;lps28dfw_pin_int_route_set(&dev_ctx, &int_route);

轮询读取数据

对于压强和温度数据是否准备好,可以查看STATUS (27h)的Zyxda位,判断是否有新数据到达。

在这里插入图片描述

对于压强数据,主要在PRESS_OUT_XL (28h)-PRESS_OUT_H (2Ah)。

在这里插入图片描述

对于温度数据,数据在TEMP_OUT_L (2Bh)-TEMP_OUT_H (2Ch)。

在这里插入图片描述

    while (1){/* Read output only if new values are available */lps28dfw_all_sources_get(&dev_ctx, &all_sources);if ( all_sources.drdy_pres | all_sources.drdy_temp ) {lps28dfw_data_get(&dev_ctx, &md, &data);printf("pressure [hPa]:%6.2f temperature [degC]:%6.2f\r\n",data.pressure.hpa, data.heat.deg_c);}}

演示

在这里插入图片描述
正常气压为50hPa到1050hPa之间。

在这里插入图片描述

主程序

#include "hal_data.h"
#include "lps28dfw_reg.h"
#include <stdio.h>fsp_err_t err = FSP_SUCCESS;
volatile bool uart_send_complete_flag = false;
void user_uart_callback (uart_callback_args_t * p_args)
{if(p_args->event == UART_EVENT_TX_COMPLETE){uart_send_complete_flag = true;}
}
/* Callback function */
i2c_master_event_t i2c_event = I2C_MASTER_EVENT_ABORTED;
uint32_t  timeout_ms = 100000;
void sci_i2c_master_callback(i2c_master_callback_args_t *p_args)
{i2c_event = I2C_MASTER_EVENT_ABORTED;if (NULL != p_args){/* capture callback event for validating the i2c transfer event*/i2c_event = p_args->event;}
}
#ifdef __GNUC__                                 //串口重定向#define PUTCHAR_PROTOTYPE int __io_putchar(int ch)
#else#define PUTCHAR_PROTOTYPE int fputc(int ch, FILE *f)
#endifPUTCHAR_PROTOTYPE
{err = R_SCI_UART_Write(&g_uart9_ctrl, (uint8_t *)&ch, 1);if(FSP_SUCCESS != err) __BKPT();while(uart_send_complete_flag == false){}uart_send_complete_flag = false;return ch;
}int _write(int fd,char *pBuffer,int size)
{for(int i=0;i<size;i++){__io_putchar(*pBuffer++);}return size;
}FSP_CPP_HEADER
void R_BSP_WarmStart(bsp_warm_start_event_t event);
FSP_CPP_FOOTER#define    BOOT_TIME         10 //ms
#define SENSOR_BUS g_i2c_master0_ctrl/* Private variables ---------------------------------------------------------*/
static uint8_t tx_buffer[1000];
static lps28dfw_data_t data;/* Private functions ---------------------------------------------------------*/
/**   WARNING:*   Functions declare in this section are defined at the end of this file*   and are strictly related to the hardware platform used.**/
static int32_t platform_write(void *handle, uint8_t reg, const uint8_t *bufp,uint16_t len);
static int32_t platform_read(void *handle, uint8_t reg, uint8_t *bufp,uint16_t len);
static void tx_com( uint8_t *tx_buffer, uint16_t len );
static void platform_delay(uint32_t ms);
static void platform_init(void);/*******************************************************************************************************************//*** main() is generated by the RA Configuration editor and is used to generate threads if an RTOS is used.  This function* is called by main() when no RTOS is used.**********************************************************************************************************************/
void hal_entry(void)
{/* TODO: add your own code here *//* Open the transfer instance with initial configuration. */err = R_SCI_UART_Open(&g_uart9_ctrl, &g_uart9_cfg);assert(FSP_SUCCESS == err);printf("hello world!\n");/* Initialize the I2C module */err = R_IIC_MASTER_Open(&g_i2c_master0_ctrl, &g_i2c_master0_cfg);/* Handle any errors. This function should be defined by the user. */assert(FSP_SUCCESS == err);R_IOPORT_PinWrite(&g_ioport_ctrl, BSP_IO_PORT_04_PIN_05, BSP_IO_LEVEL_LOW);lps28dfw_pin_int_route_t int_route;lps28dfw_all_sources_t all_sources;lps28dfw_bus_mode_t bus_mode;lps28dfw_stat_t status;stmdev_ctx_t dev_ctx;lps28dfw_id_t id;lps28dfw_md_t md;/* Initialize mems driver interface */dev_ctx.write_reg = platform_write;dev_ctx.read_reg = platform_read;dev_ctx.handle = &SENSOR_BUS;/* Wait sensor boot time */platform_delay(BOOT_TIME);/* Check device ID */lps28dfw_id_get(&dev_ctx, &id);printf("LPS28DFW_ID=0x%x,id.whoami=0x%x\n",LPS28DFW_ID,id.whoami);if (id.whoami != LPS28DFW_ID)while(1);/* Restore default configuration */lps28dfw_init_set(&dev_ctx, LPS28DFW_RESET);do {lps28dfw_status_get(&dev_ctx, &status);} while (status.sw_reset);/* Set bdu and if_inc recommended for driver usage */lps28dfw_init_set(&dev_ctx, LPS28DFW_DRV_RDY);/* Select bus interface */bus_mode.filter = LPS28DFW_AUTO;bus_mode.interface = LPS28DFW_SEL_BY_HW;lps28dfw_bus_mode_set(&dev_ctx, &bus_mode);/* Set Output Data Rate */md.odr = LPS28DFW_4Hz;md.avg = LPS28DFW_16_AVG;md.lpf = LPS28DFW_LPF_ODR_DIV_4;md.fs = LPS28DFW_1260hPa;lps28dfw_mode_set(&dev_ctx, &md);/* Configure inerrupt pins */lps28dfw_pin_int_route_get(&dev_ctx, &int_route);int_route.drdy_pres   = PROPERTY_DISABLE;lps28dfw_pin_int_route_set(&dev_ctx, &int_route);while (1){/* Read output only if new values are available */lps28dfw_all_sources_get(&dev_ctx, &all_sources);if ( all_sources.drdy_pres | all_sources.drdy_temp ) {lps28dfw_data_get(&dev_ctx, &md, &data);printf("pressure [hPa]:%6.2f temperature [degC]:%6.2f\r\n",data.pressure.hpa, data.heat.deg_c);}}#if BSP_TZ_SECURE_BUILD/* Enter non-secure code */R_BSP_NonSecureEnter();
#endif
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/339095.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

项目经理快速晋升应当具备的四个能力

项目的成功与失败都直接压在项目经理的肩上。不论问题的根源在何处&#xff0c;最终承担责任的总是项目经理。身为项目经理&#xff0c;你务必清楚&#xff0c;自己背负的是何等的重任。 1、计划能力 计划是行动的灯塔&#xff0c;若管理者无法制定计划&#xff0c;又如何引…

怎么加密VMware虚拟机?

加密 VMware VM 的先决条件 在创建加密虚拟机之前&#xff0c;以下几点值得注意。 1. 确保需要加密的虚拟机已关闭。 2. 创建虚拟机加密存储策略。 3. 与KMS 建立可信连接并选择默认KMS。 4. 验证您是否拥有所需的权限&#xff1a; 密码操作。加密新的。如果主机加密模式…

多机TCP通讯之hello world(C++)

文章目录 TCP是什么准备工作CMakeLists.txt服务端代码客户端代码参考 TCP是什么 TCP&#xff08;传输控制协议&#xff09;是一种在计算机网络中广泛使用的协议&#xff0c;它提供了可靠的、面向连接的数据传输服务。TCP 是 OSI 模型中的传输层协议&#xff0c;它确保了数据的…

CMake入门教程【高级篇】qmake转cmake

&#x1f608;「CSDN主页」&#xff1a;传送门 &#x1f608;「Bilibil首页」&#xff1a;传送门 &#x1f608;「动动你的小手」&#xff1a;点赞&#x1f44d;收藏⭐️评论&#x1f4dd; 文章目录 1. 概述2.qmake与cmake的差异3. qmake示例4.qmake转cmake示例5.MOC、UIC和RCC…

03-JVM虚拟机-课堂笔记

3-JVM虚拟机 灵魂三问&#xff1a; JVM是什么&#xff1f; JVM广义上指的是一种规范。狭义上的是JDK中的JVM虚拟机。 为什么要学习JVM&#xff1f; 面试过程中&#xff0c;经常会被问到JVM。 研发过程中&#xff0c;肯定会面临一些重难点问题与JVM有关系。例如&#xff1a…

WEB之HTML练习

第一题&#xff1a;用户注册界面 HTML代码&#xff1a; <!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"><meta name"viewport" content"widthdevice-width, initial-scale1.0"><titl…

学习笔记之——3D Gaussian Splatting源码解读

之前博客对3DGS进行了学习与调研 学习笔记之——3D Gaussian Splatting及其在SLAM与自动驾驶上的应用调研-CSDN博客文章浏览阅读450次。论文主页3D Gaussian Splatting是最近NeRF方面的突破性工作&#xff0c;它的特点在于重建质量高的情况下还能接入传统光栅化&#xff0c;优…

每日学习更新(LQR+iLQR)

一直想更新一下根据cost to go来推导LQR&#xff0c;之前的话可能会直接套问题&#xff0c;但是对于理论有些困惑&#xff0c;正好最近在学习ilqr轨迹生成/优化&#xff0c;因此来推一下公式&#xff0c;以下参考B站Dr_CAN&#xff0c;链接如下&#xff1a; 【最优控制】5_线性…

红海云CEO孙伟出席2024广州人力资源峰会,详解AI浪潮下人力资源智能化变革

1月9日&#xff0c;由广州人力资源服务协会主办的第二届会员大会第四次会议暨2024广州人力资源峰会顺利举行&#xff0c;大会以“汇聚新动能 激发新活力”为主题&#xff0c;汇聚行业精英&#xff0c;分享人力资源服务智慧与经验&#xff0c;红海云CEO孙伟受邀作为演讲嘉宾出席…

【书生大模型Demo-2】

书生大模型Demo 1 大模型InternLM介绍2 Demo2.1 InternLM-Chat-7B智能对话Demo2.1.1 环境配置2.1.2 模型下载2.1.3 代码准备2.1.4 运行Demo 2.2 Lagent智能体工具调用Demo2.3 浦语 灵笔图文创作理解Demo 3 作业3.1 使用模型生成300字小故事3.2 Lagent工具调用Demo创作部署 实践…

SD-WAN对企业网络升级的价值

在当今数字化飞速发展的时代&#xff0c;企业对网络的依赖越来越深&#xff0c;如何在确保IT正常运行的同时降低成本成为企业CIO和业务经理共同关注的焦点。SD-WAN的出现为企业组网带来了崭新的可能性&#xff0c;成为降低开支、提高效率和改善用户体验的重要工具。 企业在数字…

查准率与查全率在自然语言处理中的核心概念与联系、核心概念和实践应用,如何使用朴素贝叶斯、SVM 和深度学习实现查准率和查全率的计算?

查准率与查全率在自然语言处理中的核心概念与联系、核心概念和实践应用,如何使用朴素贝叶斯、SVM 和深度学习实现查准率和查全率的计算? 人工智能核心技术有:1. 深度学习;2.计算机视觉;3.自然语言处理;4.数据挖掘。其中,深度学习就是使用算法分析数据,从中学习并自动归…