学习机器学习时,最常见的入门算法是线性回归。初学者通常会遇到模型过拟合、欠拟合等问题。为了解决这些问题,我们需要理解模型评估指标,并进行适当的正则化。
如何使用Python实现线性回归,并评估模型:
from sklearn.model_selection import train_test_split from sklearn.linear_model import LinearRegression from sklearn.metrics import mean_squared_error, r2_score# 加载数据集 data = pd.read_csv('house_prices.csv') X = data[['square_feet', 'num_rooms']] # 特征 y = data['price'] # 目标变量# 划分训练集和测试集 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)# 创建并训练线性回归模型 model = LinearRegression() model.fit(X_train, y_train)# 预测 y_pred = model.predict(X_test)# 评估模型 mse = mean_squared_error(y_test, y_pred) r2 = r2_score(y_test, y_pred)print(f'Mean Squared Error: {mse}') print(f'R2 Score: {r2}')