在Pandas 2.0发布以后,我们发布过一些评测的文章,这次我们看看,除了Pandas以外,常用的两个都是为了大数据处理的并行数据框架的对比测试。
本文我们使用两个类似的脚本来执行提取、转换和加载(ETL)过程。
测试内容
这两个脚本主要功能包括:
从两个parquet 文件中提取数据,对于小型数据集,变量path1将为“yellow_tripdata/ yellow_tripdata_2014-01”,对于中等大小的数据集,变量path1将是“yellow_tripdata/yellow_tripdata”。对于大数据集,变量path1将是“yellow_tripdata/yellow_tripdata*.parquet”;
进行数据转换:a)连接两个DF,b)根据PULocationID计算行程距离的平均值,c)只选择某些条件的行,d)将步骤b的值四舍五入为2位小数,e)将列“trip_distance”重命名为“mean_trip_distance”,f)对列“mean_trip_distance”进行排序
将最终的结果保存到新的文件
脚本
1、Polars
数据加载读取
def extraction():"""Extract two datasets from parquet files"""path1="yellow_tripdata/yellow_tripdata_2014-01.parquet"df_trips= pl_read_parquet(path1,)path2 = "taxi+_zone_lookup.parquet"df_zone = pl_read_parquet(path2,)return df_trips, df_zonedef pl_read_parquet(path, ):"""Converting parquet file into Polars dataframe"""df= pl.scan_parquet(path,)return df
转换函数
def transformation(df_trips, df_zone):"""Proceed to several transformations"""df_trips= mean_test_speed_pl(df_trips, )df = df_trips.join(df_zone,how="inner", left_on="PULocationID", right_on="LocationID",)df = df.select(["Borough","Zone","trip_distance",])df = get_Queens_test_speed_pd(df)df = round_column(df, "trip_distance",2)df = rename_column(df, "trip_distance","mean_trip_distance")df = sort_by_columns_desc(df, "mean_trip_distance")return dfdef mean_test_speed_pl(df_pl,):"""Getting Mean per PULocationID"""df_pl = df_pl.groupby('PULocationID').agg(pl.col(["trip_distance",]).mean())return df_pldef get_Queens_test_speed_pd(df_pl):"""Only getting Borough in Queens"""df_pl = df_pl.filter(pl.col("Borough")=='Queens')return df_pldef round_column(df, column,to_round):"""Round numbers on columns"""df = df.with_columns(pl.col(column).round(to_round))return dfdef rename_column(df, column_old, column_new):"""Renaming columns"""df = df.rename({column_old: column_new})return dfdef sort_by_columns_desc(df, column):"""Sort by column"""df = df.sort(column, descending=True)return df
保存
def loading_into_parquet(df_pl):"""Save dataframe in parquet"""df_pl.collect(streaming=True).write_parquet(f'yellow_tripdata_pl.parquet')
其他代码
import polars as plimport timedef pl_read_parquet(path, ):"""Converting parquet file into Polars dataframe"""df= pl.scan_parquet(path,)return dfdef mean_test_speed_pl(df_pl,):"""Getting Mean per PULocationID"""df_pl = df_pl.groupby('PULocationID').agg(pl.col(["trip_distance",]).mean())return df_pldef get_Queens_test_speed_pd(df_pl):"""Only getting Borough in Queens"""df_pl = df_pl.filter(pl.col("Borough")=='Queens')return df_pldef round_column(df, column,to_round):"""Round numbers on columns"""df = df.with_columns(pl.col(column).round(to_round))return dfdef rename_column(df, column_old, column_new):"""Renaming columns"""df = df.rename({column_old: column_new})return dfdef sort_by_columns_desc(df, column):"""Sort by column"""df = df.sort(column, descending=True)return dfdef main():print(f'Starting ETL for Polars')start_time = time.perf_counter()print('Extracting...')df_trips, df_zone =extraction()end_extract=time.perf_counter() time_extract =end_extract- start_timeprint(f'Extraction Parquet end in {round(time_extract,5)} seconds')print('Transforming...')df = transformation(df_trips, df_zone)end_transform = time.perf_counter() time_transformation =time.perf_counter() - end_extractprint(f'Transformation end in {round(time_transformation,5)} seconds')print('Loading...')loading_into_parquet(df,)load_transformation =time.perf_counter() - end_transformprint(f'Loading end in {round(load_transformation,5)} seconds')print(f"End ETL for Polars in {str(time.perf_counter()-start_time)}")if __name__ == "__main__":main()
2、Dask
函数功能与上面一样,所以我们把代码整合在一起:
import dask.dataframe as ddfrom dask.distributed import Clientimport timedef extraction():path1 = "yellow_tripdata/yellow_tripdata_2014-01.parquet"df_trips = dd.read_parquet(path1)path2 = "taxi+_zone_lookup.parquet"df_zone = dd.read_parquet(path2)return df_trips, df_zonedef transformation(df_trips, df_zone):df_trips = mean_test_speed_dask(df_trips)df = df_trips.merge(df_zone, how="inner", left_on="PULocationID", right_on="LocationID")df = df[["Borough", "Zone", "trip_distance"]]df = get_Queens_test_speed_dask(df)df = round_column(df, "trip_distance", 2)df = rename_column(df, "trip_distance", "mean_trip_distance")df = sort_by_columns_desc(df, "mean_trip_distance")return dfdef loading_into_parquet(df_dask):df_dask.to_parquet("yellow_tripdata_dask.parquet", engine="fastparquet")def mean_test_speed_dask(df_dask):df_dask = df_dask.groupby("PULocationID").agg({"trip_distance": "mean"})return df_daskdef get_Queens_test_speed_dask(df_dask):df_dask = df_dask[df_dask["Borough"] == "Queens"]return df_daskdef round_column(df, column, to_round):df[column] = df[column].round(to_round)return dfdef rename_column(df, column_old, column_new):df = df.rename(columns={column_old: column_new})return dfdef sort_by_columns_desc(df, column):df = df.sort_values(column, ascending=False)return dfdef main():print("Starting ETL for Dask")start_time = time.perf_counter()client = Client() # Start Dask Clientdf_trips, df_zone = extraction()end_extract = time.perf_counter()time_extract = end_extract - start_timeprint(f"Extraction Parquet end in {round(time_extract, 5)} seconds")print("Transforming...")df = transformation(df_trips, df_zone)end_transform = time.perf_counter()time_transformation = time.perf_counter() - end_extractprint(f"Transformation end in {round(time_transformation, 5)} seconds")print("Loading...")loading_into_parquet(df)load_transformation = time.perf_counter() - end_transformprint(f"Loading end in {round(load_transformation, 5)} seconds")print(f"End ETL for Dask in {str(time.perf_counter() - start_time)}")client.close() # Close Dask Clientif __name__ == "__main__":main()
测试结果对比
1、小数据集
我们使用164 Mb的数据集,这样大小的数据集对我们来说比较小,在日常中也时非常常见的。
下面是每个库运行五次的结果:
Polars
Dask
2、中等数据集
我们使用1.1 Gb的数据集,这种类型的数据集是GB级别,虽然可以完整的加载到内存中,但是数据体量要比小数据集大很多。
Polars
Dask
3、大数据集
我们使用一个8gb的数据集,这样大的数据集可能一次性加载不到内存中,需要框架的处理。
Polars
Dask
总结
从结果中可以看出,Polars和Dask都可以使用惰性求值。所以读取和转换非常快,执行它们的时间几乎不随数据集大小而变化;
可以看到这两个库都非常擅长处理中等规模的数据集。
由于polar和Dask都是使用惰性运行的,所以下面展示了完整ETL的结果(平均运行5次)。
Polars在小型数据集和中型数据集的测试中都取得了胜利。但是,Dask在大型数据集上的平均时间性能为26秒。
这可能和Dask的并行计算优化有关,因为官方的文档说“Dask任务的运行速度比Spark ETL查询快三倍,并且使用更少的CPU资源”。
上面是测试使用的电脑配置,Dask在计算时占用的CPU更多,可以说并行性能更好。
https://avoid.overfit.cn/post/74128cd8803b43f2a51ca4ff4fed4a95
作者:Luís Oliveira