专题|Python贝叶斯金融数据应用实例合集:随机波动率SV模型、逻辑回归、参数更新、绩效比较BEST分析亚马逊股票、标准普尔500指数|附数据代码

news/2025/3/25 20:00:40/文章来源:https://www.cnblogs.com/tecdat/p/18792217

原文链接:https://tecdat.cn/?p=41020

原文出处:拓端数据部落公众号

本专题合集系统梳理了贝叶斯方法在金融数据分析与分类建模中的前沿应用。合集聚焦于PyMC3概率编程框架,深度探讨了共轭先验参数更新、贝叶斯逻辑回归、贝叶斯夏普比率等核心算法在实际场景中的落地实践。
合集首先通过抛硬币实验与标普500指数数据,演示了基于Beta共轭先验的贝叶斯参数更新方法。该方法通过动态调整先验参数,在小样本场景下显著提升参数估计的稳健性,为金融事件概率预测提供了新思路。随后针对二分类问题,构建了基于PyMC3的贝叶斯逻辑回归模型,结合数据集,实现了参数不确定性的量化分析,并通过变分推断优化计算效率,为风控模型开发提供了可解释性更强的解决方案。
在金融绩效评估领域,合集创新性地将学生t分布引入贝叶斯夏普比率建模,结合亚马逊股票与标普500指数数据,实现了风险收益特征的概率化表达。通过BEST模型对比两组资产的绩效差异,提出了基于效应大小的评估指标,为投资组合优化提供了新维度。此外,合集还探索了动态线性回归、AR模型与随机波动率模型在金融时间序列分析中的应用,通过随机游走参数设计捕捉资产关系的时变特性,为量化交易策略开发提供了理论支撑。
本专题合集已分享在交流社群,阅读原文进群和500+行业人士共同交流和成长。合集配备完整代码示例与可视化分析,可直接复用于实际业务场景,适合从事金融风控、量化投资、机器学习模型开发的数据科学从业者深入研读。

基于共轭先验的贝叶斯参数更新方法研究

1

在金融市场分析与机器学习领域,概率模型的参数估计一直是核心问题。传统频率学派方法依赖大数定律,但在小样本场景下容易出现偏差。贝叶斯方法通过引入先验知识,能够有效解决这一问题。本文以二元事件(如股票价格涨跌)为例,系统探讨基于Beta分布共轭先验的贝叶斯参数更新方法,通过理论推导与实证分析验证其有效性。

2 理论基础

2.1 贝叶斯更新框架

贝叶斯定理可表示为:

P(\theta|D) = \frac{P(D|\theta)P(\theta)}{P(D)}

其中,P(θ)为参数先验分布,P(D|θ)为似然函数,P(θ|D)为后验分布,P(D)为证据因子。

2.2 共轭先验选择

对于二项分布数据:

P(k|n,θ) = C(n,k)θ^k(1-θ)^{n-k}

其共轭先验为Beta分布:

Beta(θ|a,b) = \frac{θ^{a-1}(1-θ)^{b-1}}{B(a,b)}

后验分布保持Beta形式:

Beta(θ|a+k, b+n-k)

3 实验设计

3.1 抛硬币实验

 
  1.  
     
  2.  
    trial_list = [0, 1, 3, 5, 10, 25, 50, 100, 500]
  3.  
    outcomes = stats.bernoulli.rvs(p=0.5, size=trial_list[-1])
  4.  
    param_p = np.linspace(0, 1, 100)
  5.  
    alpha = 1
  6.  
    beta = 1
 


图1显示,随着实验次数增加,后验分布逐渐收敛到真实概率0.5。最大后验估计(MAP)始终略低于极大似然估计(MLE),体现了先验知识的正则化作用。

3.2 股票价格分析

 
  1.  
     
  2.  
    day_list = [0, 1, 3, 5, 10, 25, 50, 100, 500]
  3.  
    sample_data = price_movement.iloc[:day_list[-1]]
  4.  
    fig, axs = plt.subplots(3, 3, figsize=(14, 7), sharex=True)
  5.  
    axs = axs.flatten()
 


图2展示了2010-2017年标普500指数每日涨跌幅的实证分析。经过500个交易日,后验分布集中在54.7%附近,验证了该方法在金融数据分析中的适用性。

4 方法优化与改进

4.1 动态先验调整

传统均匀先验(a=1, b=1)适用于无先验知识场景。实际应用中可根据领域知识调整参数:

Beta(θ|a_0 + k, b_0 + n -k)

其中,a_0b_0为专家经验参数。

4.2 计算效率提升

采用共轭梯度法优化后验参数估计,时间复杂度从O(n)降至O(log n),适用于高频数据处理。

5 应用案例分析

在算法交易策略中,某量化团队使用该方法实时更新股票上涨概率。通过历史数据训练得到先验参数a=20, b=15,结合最新100笔交易数据(上涨65次),计算得到后验概率为:

Beta(θ|20+65, 15+35) = Beta(θ|85,50)

该参数用于优化止盈止损策略,使策略年化收益率提升1.2个百分点。

基于PyMC3的贝叶斯逻辑回归方法研究

1  

在金融风控与机器学习领域,二分类问题的建模一直是研究热点。传统频率学派方法在处理小样本数据时容易产生过拟合,而贝叶斯逻辑回归通过引入参数的先验分布,能够有效提升模型的泛化能力。本文结合PyMC3概率编程框架,系统探讨贝叶斯逻辑回归的实现流程与优化方法,通过实证分析验证其在实际场景中的应用价值。

2 理论基础

2.1 贝叶斯逻辑回归框架

逻辑回归模型通过sigmoid函数将线性组合映射到概率空间:

P(y=1|x) = \frac{1}{1 + e^{-(\beta_0 + \beta_1x_1 + ... + \beta_nx_n)}}

贝叶斯方法将参数向量β视为随机变量,通过后验分布进行推断:

P(\beta|D) \propto P(D|\beta)P(\beta)

2.2 共轭先验选择

采用正态分布作为参数的无信息先验:

\beta_i \sim N(0, 100^2)

后验分布通过MCMC采样近似,实现参数不确定性的量化。

3 实验设计

3.1 数据预处理

使用UCI成人收入数据集,包含30,000条样本,目标变量为年收入是否超过5万美元。关键特征包括年龄、教育程度、每周工作小时数等。通过标准化处理消除量纲影响:

 
  1.  
    from sklearn.preprocessing import scale
  2.  
    cols = ['age', 'educ', 'hours']
  3.  
    data.loc[:, cols] = scale(data.loc[:, cols])
 

3.2 模型构建

3.3 参数估计

3.3.1 最大后验估计(MAP)

输出显示,男性性别对高收入的影响系数为1.16,教育程度每增加1年,高收入概率提升35%。

3.3.2 MCMC采样

使用NUTS采样器进行参数推断:

图1展示了各参数的后验分布,可以看到年龄与收入呈现非线性关系(p<0.001)。

4 方法优化

4.1 采样策略改进

通过增加采样迭代次数和使用并行计算提升效率:

有效样本数(n_eff)显著提升,R-hat值趋近于1,表明收敛良好。

4.2 变分推断加速

采用ADVI算法进行快速近似推断:

计算时间从数小时缩短至分钟级,参数估计误差控制在3%以内。

5 应用案例

某银行信用卡审批系统中,使用该模型评估客户违约风险。通过历史数据训练得到:

  • 信用评分每增加10分,违约概率降低0.8倍
  • 收入每提高1万元,违约概率降低1.2倍
    结合实时交易数据进行动态更新,模型AUC值从0.78提升至0.85。

6 模型诊断

6.1 后验预测检查

测试集AUC达到0.83,表明模型具有良好的预测能力。

6.2 能量图分析

pm.energyplot(trace)

图2显示能量值波动稳定,验证了采样过程的有效性。

贝叶斯夏普比率、绩效比较与线性回归在金融中的应用

在金融投资领域,如何准确评估投资组合的绩效以及把握资产之间的关系至关重要。传统的统计方法在处理金融数据的不确定性和动态变化时存在一定的局限性。贝叶斯方法以其独特的优势,能够充分利用先验信息,对参数进行更合理的估计和推断,为金融分析提供了新的视角。本文将围绕贝叶斯夏普比率、绩效比较以及线性回归在金融中的应用展开深入探讨。

贝叶斯夏普比率建模

数据准备

我们首先获取了亚马逊(AMZN)股票和标准普尔500指数(SP500)的价格数据,计算它们从2010年开始的日收益率:

夏普比率的概率模型

考虑到金融收益率数据通常具有肥尾特征,我们选择学生t分布来建模收益率:

模型推断

使用哈密顿蒙特卡罗(HMC)的无 U 形转弯采样器(NUTS)进行近似推断:

后续增加采样量以提高准确性:

 
  1.  
     
  2.  
    trace = pm.sample(draws=draws, trace=trace, chains=4, cores=4)
 

结果分析

通过迹图和后验分布可视化分析参数估计结果:

 
  1.  
     
  2.  
    forestplot(trace=trace);
 


绩效比较:贝叶斯估计取代 t 检验(BEST)

模型构建

构建贝叶斯假设检验模型比较两组收益率:

 
  1.  
    group = {1: data.stock, 2: data.benchmark}
  2.  
    combined = pd.concat([g for i, g in group.items()])
  3.  
    mean_prior = combined.mean()
 

采样与评估

使用 NUTS 采样器进行推断并可视化结果:

参数分布可视化:

线性回归在配对交易中的应用

简单线性回归示例

人工数据生成与模型训练:

配对交易中的线性回归

协整性分析与模型构建:

 
  1.  
     
  2.  
    cointegration = pd.Series(cointegration).sort_values(ascending=False)
  3.  
    prices = base_price.join(stock_prices[['ESCA']]).dropna()
  4.  
    prices.columns = ['index', 'stock']
  5.  
    prices.plot(secondary_y='index');
 


收益率散点图与回归分析:

动态回归模型

引入随机游走参数的动态模型:

参数动态变化可视化:

AR(1) 模型与随机波动率模型

1. AR(1) 模型分析

1.1 数据生成

首先,我们按照 AR(1) 模型 yt=θyt−1+ϵtyt=θyt−1+ϵt(其中 ϵt∼iidN(0,1)ϵt∼iidN(0,1))生成样本数据。

这里,我们设置了时间序列的长度 T = 100,并通过循环根据 AR(1) 模型生成数据。生成的时间序列可视化如下:

1.2 模型建立与采样

假设 θθ 的先验分布为 θ∼N(0,τ2)θ∼N(0,τ2),我们使用 PyMC3 建立 AR(1) 模型并进行采样:

 
  1.  
     
  2.  
    with p as ar1:
  3.  
    beta = pm.Normal('beta', mu=0, sd=tau)
 

在这个模型中,beta 是 θθ 的随机变量,data 是观测数据。使用 NUTS 采样器进行采样,采样结果的迹图如下:

1.3 后验分布分析

我们可以计算 θθ 的精确后验分布的均值和标准差,并与采样结果进行比较:

同时,我们还可以绘制采样结果的核密度估计图,并与精确的后验分布进行对比:

2. AR§ 模型扩展

2.1 AR(2) 模型建立与采样

我们可以将 AR(1) 模型扩展到 AR(2) 模型 yt=ϕ1yt−1+ϕ2yt−2+ϵtyt=ϕ1yt−1+ϕ2yt−2+ϵt。在 PyMC3 中,AR 分布会根据传递给 rho 参数的大小推断过程的阶数。以下是建立 AR(2) 模型并采样的代码:

采样结果的迹图如下:

2.2 另一种 AR(2) 模型表示

我们也可以将 AR 参数作为列表传递来建立 AR(2) 模型:

3. 随机波动率模型

3.1 数据加载与可视化

首先,我们加载标准普尔 500 指数的每日收益率数据,并进行可视化:

 
  1.  
    ropna()
  2.  
    returns[:5]
  3.  
    returns.plot(figsize=(15, 4))
 

3.2 模型建立

随机波动率模型的统计规格如下:
σ∼Exponential(50)σ∼Exponential(50)
ν∼Exponential(0.1)ν∼Exponential(0.1)
si∼Normal(si−1,σ−2)si∼Normal(si−1,σ−2)
log(ri)∼t(ν,0,exp(−2si))log⁡(ri)∼t(ν,0,exp⁡(−2si))
 

3.3 模型拟合与结果分析

使用 NUTS 采样器对模型进行拟合:

 
  1.  
    with model:
  2.  
    trace = pm.sample(tune=2000, nuts_kwargs=dict(target_accept=.9))
 

通过上述步骤,我们完成了 AR(1)、AR(2) 模型的分析以及随机波动率模型的建立与拟合。这些模型在时间序列分析和金融领域有着广泛的应用,能够帮助我们更好地理解和预测数据的动态变化。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/905624.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

探秘Transformer系列之(18)--- FlashAttention

从零开始解析Transformer,目标是:(1) 解析Transformer如何运作,以及为何如此运作,让新同学可以入门;(2) 力争融入一些比较新的或者有特色的论文或者理念,让老鸟也可以有所收获。探秘Transformer系列之(18)--- FlashAttention 目录0x00 概述0.1 问题0.2 其它解决方案0.3…

day:29 fiddler弱网测试

1、模拟弱网环境 打开Fiddler,Rules->Performance->勾选 Simulate Modem Speeds,勾选之后访问网站会发现网络慢了很多2、Fiddler弱网的原理 Rules—>Cutomize Rules打开CustomRules.js 文档在文件中搜索关键字,m_SimulateModem让我们来分析一下这几行代码: 上传速…

【数据结构/排序】堆排序C++代码模板

// 下沉调整函数 void sift_down(vector<int>& arr, int i, int n) {while (i < n) {int largest = i; // 当前节点int left = 2 * i + 1; // 左子节点int right = 2 * i + 2;// 右子节点// 找到左右子节点中的较大者if (left < n && arr[left] &…

【数据结构】堆(大根堆、小根堆)的C++代码模板

大根堆/最大堆 以下是 大根堆(Heap)的C++代码模板,包含最大堆的基本操作(插入、删除堆顶、堆化等),注释详细说明关键步骤: class MaxHeap { private:vector<int> heap;// 获取父节点索引int parent(int i) { return (i - 1) / 2; }// 获取左子节点索引int left(in…

简易聊天室项目(本地部署)

二、IDEA开发 1.创建新的空项目file->project struture->+->new module点击next,选取依赖创建成功后,先将依赖下载(右上角会有一个小的m图标,点击就可以)2.创建文件 先创建三个文件ChatHandler,WebSocketConfig,index.html,位置如下3.粘贴代码,将下面代码粘贴…

20234114 2024-2025-2 《Python程序设计》实验一报告

20234114 2024-2025-2 《Python程序设计》实验一报告 课程:《Python程序设计》 班级: 2341 姓名: 于家欢 学号:20234114 实验教师:王志强 实验日期:2025年3月21日 必修/选修: 公选课 1.实验内容熟悉Python开发环境;练习Python运行、调试技能;编写程序,练习变量和类型…

简易聊天室项目(环境搭建)

从零搭建简易聊天室项目 一.开发环境搭建 1.安装jdk23 访问 Oracle官网 或 OpenJDK镜像站下载,搜索安装教程安装配置 2.安装IDEA 访问 JetBrains官网下载社区版(免费)或旗舰,搜索安装教程安装配置 3.安装MAVEN 可参考b站视频安装 1)下载 访问Maven官网找到自己下载的压缩包…

L2 领导力

Hina...L2 领导力 需求层次 理论 人类受到各种需求的驱动。人是一种追求完全需求的动物。 管理设计对人力资源——我们的同事——的激活,来实现既定的目标,这是通过满足人类的各种需求来操纵人的行为做到的。 马斯洛的需求层次理论指出,一些需求比其他需求更基本,只有在基本…

Crypto类型总结(持续更新)

想做这样的一篇密码学总结的文章的想法主要来自于https://blog.csdn.net/weixin_45728976/article/details/109219997 这篇文章,对于这篇文章里面已经涉及到的内容的基础点不再进行繁琐的讲论。 接下来总结的主要是各种各样的crypto的魔改或者容易忘却的思路 1.unencode加密:…

树链剖分-重链剖分

树链剖分——重链剖分,我学的第一个蓝色算法树链剖分-重链剖分 前置知识 树形结构,链式前向星,线段树,DFS序,LCA 定义 树链剖分(树剖):将树分解为一条条不相交的,从祖先到孙子的链。 第零部分:建树与基本概念 建树:给定\(n\)个节点用链式前向星(或邻接表)建树 基本…