yolov8车牌识别算法,支持12种中文车牌类型
支持如下:
- 1.单行蓝牌
- 2.单行黄牌
- 3.新能源车牌
- 4.白色警用车牌
- 5.教练车牌
- 6.武警车牌
- 7.双层黄牌
- 8.双层白牌
- 9.使馆车牌
- 10.港澳粤Z牌
- 11.双层绿牌
- 12.民航车牌
图片测试demo:
直接运行detect_plate.py 或者运行如下命令行:
python detect_rec_plate.py --detect_model weights/yolov8-lite-t-plate.pt --rec_model weights/plate_rec_color.pth --image_path imgs --output result
车牌检测训练
车牌检测训练如下:
车牌检测训练
-
下载数据集: 数据集可以添加QQ767172261获取 数据从CCPD和CRPD数据集中选取的一部分并转换的 数据集格式为yolo格式:
label x y w h
2.修改ultralytics/datasets/yolov8-plate.yaml train和val路径,换成你的数据路径:
train: /mnt/mydisk/xiaolei/plate_detect/new_train_data # train images (relative to 'path') 4 images
val: /mnt/mydisk/xiaolei/plate_detect/new_val_data # val images (relative to 'path') 4 images# Classes for DOTA 1.0
names:
0: single
1: double
3.训练
yolo task=detect mode=train model=yolov8s.yaml data=./ultralytics/cfg/datasets/plate.yaml epochs=120 batch=32 imgsz=640 pretrained=False optimizer=SGD
结果存在run文件夹中:
车牌识别训练
车牌识别训练如下:
训练的时候 选择相应的cfg 即可选择模型的大小:
# construct face related neural networks#cfg =[8,8,16,16,'M',32,32,'M',48,48,'M',64,128] #small model# cfg =[16,16,32,32,'M',64,64,'M',96,96,'M',128,256]#medium modelcfg =[32,32,64,64,'M',128,128,'M',196,196,'M',256,256] #big modelmodel = myNet_ocr(num_classes=len(plate_chr),cfg=cfg)
环境配置
- WIN 10 or Ubuntu 16.04
- **PyTorch > 1.2.0 (may fix ctc loss)**🔥
- yaml
- easydict
- tensorboardX
数据
车牌识别数据集CCPD+CRPD
-
从CCPD和CRPD截下来的车牌小图以及我自己收集的一部分车牌 有需要的话加qq群获取:823419837
-
数据集打上标签,生成train.txt和val.txt
图片命名如上图:车牌号_序号.jpg 然后执行如下命令,得到train.txt和val.txt
python plateLabel.py --image_path your/train/img/path/ --label_file datasets/train.txt
python plateLabel.py --image_path your/val/img/path/ --label_file datasets/val.txt
数据格式如下:
train.txt
/mnt/Gu/trainData/plate/new_git_train/CCPD_CRPD_ALL/冀BAJ731_3.jpg 5 53 52 60 49 45 43
/mnt/Gu/trainData/plate/new_git_train/CCPD_CRPD_ALL/冀BD387U_2454.jpg 5 53 55 45 50 49 70
/mnt/Gu/trainData/plate/new_git_train/CCPD_CRPD_ALL/冀BG150C_3.jpg 5 53 58 43 47 42 54
/mnt/Gu/trainData/plate/new_git_train/CCPD_CRPD_OTHER_ALL/皖A656V3_8090.jpg 13 52 48 47 48 71 45
/mnt/Gu/trainData/plate/new_git_train/CCPD_CRPD_OTHER_ALL/皖C91546_7979.jpg 13 54 51 43 47 46 48
/mnt/Gu/trainData/plate/new_git_train/CCPD_CRPD_OTHER_ALL/皖G88950_1540.jpg 13 58 50 50 51 47 42
/mnt/Gu/trainData/plate/new_git_train/CCPD_CRPD_OTHER_ALL/皖GX9Y56_2113.jpg 13 58 73 51 74 47 48
将train.txt val.txt路径写入lib/config/360CC_config.yaml 中
DATASET:DATASET: 360CCROOT: ""CHAR_FILE: 'lib/dataset/txt/plate2.txt'JSON_FILE: {'train': 'datasets/train.txt', 'val': 'datasets/val.txt'}
结果保存再output文件夹中
测试demo
python demo.py --model_path saved_model/best.pth --image_path images/test.jpgor your/model/path
结果是:
导出onnx:
python export.py --weights saved_model/best.pth --save_path saved_model/best.onnx --simplify
onnx 推理:
python onnx_infer.py --onnx_file saved_model/best.onnx --image_path images/test.jpg
双层车牌
双层车牌这里采用拼接成单层车牌的方式:
python:
def get_split_merge(img):h,w,c = img.shapeimg_upper = img[0:int(5/12*h),:]img_lower = img[int(1/3*h):,:]img_upper = cv2.resize(img_upper,(img_lower.shape[1],img_lower.shape[0]))new_img = np.hstack((img_upper,img_lower))return new_img
c++:
cv::Mat get_split_merge(cv::Mat &img) //双层车牌 分割 拼接
{cv::Rect upper_rect_area = cv::Rect(0,0,img.cols,int(5.0/12*img.rows));cv::Rect lower_rect_area = cv::Rect(0,int(1.0/3*img.rows),img.cols,img.rows-int(1.0/3*img.rows));cv::Mat img_upper = img(upper_rect_area);cv::Mat img_lower =img(lower_rect_area);cv::resize(img_upper,img_upper,img_lower.size());cv::Mat out(img_lower.rows,img_lower.cols+img_upper.cols, CV_8UC3, cv::Scalar(114, 114, 114));img_upper.copyTo(out(cv::Rect(0,0,img_upper.cols,img_upper.rows)));img_lower.copyTo(out(cv::Rect(img_upper.cols,0,img_lower.cols,img_lower.rows)));return out;
}
训练自己的数据集
- 修改alphabets.py,修改成你自己的字符集,plateName,plate_chr都要修改,plate_chr 多了一个空的占位符'#'
- 通过plateLabel.py 生成train.txt, val.txt
- 训练
数据增强
cd Text-Image-Augmentation-python-masterpython demo1.py --src_path /mnt/Gu/trainData/test_aug --dst_path /mnt/Gu/trainData/result_aug/
src_path 是数据路径, dst_path是保存的数据路径
然后把两份数据放到一起进行训练,效果会好很多!